Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Int Conf Image Proc ; 2020: 2516-2520, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33841049

ABSTRACT

RTip is a tool to quantify plant root growth velocity using high resolution microscopy image sequences at sub-pixel accuracy. The fully automated RTip tracker is designed for high-throughput analysis of plant phenotyping experiments with episodic perturbations. RTip is able to auto-skip past these manual intervention perturbation activity, i.e. when the root tip is not under the microscope, image is distorted or blurred. RTip provides the most accurate root growth velocity results with the lowest variance (i.e. localization jitter) compared to six tracking algorithms including the top performing unsupervised Discriminative Correlation Filter Tracker and the Deeper and Wider Siamese Network. RTip is the only tracker that is able to automatically detect and recover from (occlusion-like) varying duration perturbation events.

2.
iScience ; 23(7): 101309, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32645582

ABSTRACT

In the root, meristem and elongation zone lengths remain stable, despite growth and division of cells. To gain insight into zone stability, we imaged individual Arabidopsis thaliana roots through a horizontal microscope and used image analysis to obtain velocity profiles. For a root, velocity profiles obtained every 5 min over 3 h coincided closely, implying that zonation is regulated tightly. However, the position of the elongation zone saltated, by on average 17 µm every 5 min. Saltation was apparently driven by material elements growing faster and then slower, while moving through the growth zone. When the shoot was excised, after about 90 min, growth zone dynamics resembled those of intact roots, except that the position of the elongation zone moved, on average, rootward, by several hundred microns in 24 h. We hypothesize that mechanisms determining elongation zone position receive input from the shoot.

SELECTION OF CITATIONS
SEARCH DETAIL