Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Nat Methods ; 20(5): 714-722, 2023 05.
Article in English | MEDLINE | ID: mdl-37012480

ABSTRACT

Major aims of single-cell proteomics include increasing the consistency, sensitivity and depth of protein quantification, especially for proteins and modifications of biological interest. Here, to simultaneously advance all these aims, we developed prioritized Single-Cell ProtEomics (pSCoPE). pSCoPE consistently analyzes thousands of prioritized peptides across all single cells (thus increasing data completeness) while maximizing instrument time spent analyzing identifiable peptides, thus increasing proteome depth. These strategies increased the sensitivity, data completeness and proteome coverage over twofold. The gains enabled quantifying protein variation in untreated and lipopolysaccharide-treated primary macrophages. Within each condition, proteins covaried within functional sets, including phagosome maturation and proton transport, similarly across both treatment conditions. This covariation is coupled to phenotypic variability in endocytic activity. pSCoPE also enabled quantifying proteolytic products, suggesting a gradient of cathepsin activities within a treatment condition. pSCoPE is freely available and widely applicable, especially for analyzing proteins of interest without sacrificing proteome coverage. Support for pSCoPE is available at http://scp.slavovlab.net/pSCoPE .


Subject(s)
Proteome , Proteomics , Proteome/analysis , Proteomics/methods , Mass Spectrometry , Peptides/chemistry , Macrophages
2.
Nat Methods ; 20(3): 375-386, 2023 03.
Article in English | MEDLINE | ID: mdl-36864200

ABSTRACT

Analyzing proteins from single cells by tandem mass spectrometry (MS) has recently become technically feasible. While such analysis has the potential to accurately quantify thousands of proteins across thousands of single cells, the accuracy and reproducibility of the results may be undermined by numerous factors affecting experimental design, sample preparation, data acquisition and data analysis. We expect that broadly accepted community guidelines and standardized metrics will enhance rigor, data quality and alignment between laboratories. Here we propose best practices, quality controls and data-reporting recommendations to assist in the broad adoption of reliable quantitative workflows for single-cell proteomics. Resources and discussion forums are available at https://single-cell.net/guidelines .


Subject(s)
Benchmarking , Proteomics , Benchmarking/methods , Proteomics/methods , Reproducibility of Results , Proteins/analysis , Tandem Mass Spectrometry/methods , Proteome/analysis
3.
J Virol ; 98(3): e0148523, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38412044

ABSTRACT

Vaccinia virus (VACV) is a large DNA virus that encodes scores of proteins that modulate the host immune response. VACV protein C4 is one such immunomodulator known to inhibit the activation of both the NF-κB signaling cascade and the DNA-PK-mediated DNA sensing pathway. Here, we show that the N-terminal region of C4, which neither inhibits NF-κB nor mediates interaction with DNA-PK, still contributes to virus virulence. Furthermore, this domain interacts directly and with high affinity to the C-terminal domain of filamin B (FLNB). FLNB is a large actin-binding protein that stabilizes the F-actin network and is implicated in other cellular processes. Deletion of FLNB from cells results in larger VACV plaques and increased infectious viral yield, indicating that FLNB restricts VACV spread. These data demonstrate that C4 has a new function that contributes to virulence and engages the cytoskeleton. Furthermore, we show that the cytoskeleton performs further previously uncharacterized functions during VACV infection. IMPORTANCE: Vaccinia virus (VACV), the vaccine against smallpox and monkeypox, encodes many proteins to counteract the host immune response. Investigating these proteins provides insights into viral immune evasion mechanisms and thereby indicates how to engineer safer and more immunogenic VACV-based vaccines. Here, we report that the N-terminal domain of VACV protein C4 interacts directly with the cytoskeletal protein filamin B (FLNB), and this domain of C4 contributes to virus virulence. Furthermore, VACV replicates and spreads better in cells lacking FLNB, thus demonstrating that FLNB has antiviral activity. VACV utilizes the cytoskeleton for movement within and between cells; however, previous studies show no involvement of C4 in VACV replication or spread. Thus, C4 associates with FLNB for a different reason, suggesting that the cytoskeleton has further uncharacterized roles during virus infection.


Subject(s)
Filamins , Vaccinia virus , Viral Proteins , Humans , Cell Line , DNA/metabolism , Filamins/genetics , Filamins/metabolism , NF-kappa B/metabolism , Vaccinia/virology , Vaccinia virus/pathogenicity , Vaccinia virus/physiology , Viral Proteins/genetics , Viral Proteins/metabolism , Animals
4.
Trends Biochem Sci ; 44(2): 95-109, 2019 02.
Article in English | MEDLINE | ID: mdl-30473427

ABSTRACT

The existence of eukaryotic ribosomes with distinct ribosomal protein (RP) stoichiometry and regulatory roles in protein synthesis has been speculated for over 60 years. Recent advances in mass spectrometry (MS) and high-throughput analysis have begun to identify and characterize distinct ribosome stoichiometry in yeast and mammalian systems. In addition to RP stoichiometry, ribosomes host a vast array of protein modifications, effectively expanding the number of human RPs from 80 to many thousands of distinct proteoforms. Is it possible that these proteoforms combine to function as a 'ribosome code' to tune protein synthesis? We outline the specific benefits that translational regulation by specialized ribosomes can offer and discuss the means and methodologies available to correlate and characterize RP stoichiometry with function. We highlight previous research with a focus on formulating hypotheses that can guide future experiments and crack the ribosome code.


Subject(s)
Ribosomal Proteins/chemistry , Ribosomal Proteins/metabolism , Ribosomes/chemistry , Ribosomes/metabolism , Animals , High-Throughput Screening Assays , Humans , Mass Spectrometry , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism
5.
Trends Biochem Sci ; 44(5): 478-479, 2019 05.
Article in English | MEDLINE | ID: mdl-30792028

ABSTRACT

Contrary to the textbook model, recent measurements demonstrated unexpected diversity in ribosomal composition that likely enables specialized translational functions. Methods based on liquid chromatography coupled to tandem mass-spectrometry (LC-MS/MS) enable direct quantification of ribosomal proteins with high specificity, accuracy, and throughput. LC-MS/MS can be 'top-down', analyzing intact proteins, or more commonly 'bottom-up', where proteins are digested to peptides prior to analysis. Changes to rRNA can be examined using either LC-MS/MS or sequencing-based approaches. The regulation of protein synthesis by specialized ribosomes can be examined by multiple methods. These include the popular 'Ribo-Seq' method for analyzing ribosome density on a given mRNA, as well as LC-MS/MS approaches incorporating pulse-labelling with stable isotopes (SILAC) to monitor protein synthesis and degradation.


Subject(s)
RNA, Ribosomal/chemistry , Ribosomes/chemistry , Chromatography, Liquid , Models, Molecular , Proteins/chemistry , Tandem Mass Spectrometry
6.
J Virol ; 95(13): e0028221, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33853966

ABSTRACT

Vesivirus 2117 is an adventitious agent that has been responsible for lost productivity in biopharmaceutical production following contamination of Chinese hamster ovary cell cultures in commercial bioreactors. A member of the Caliciviridae, 2117 is classified within the Vesivirus genus in a clade that includes canine and mink caliciviruses but is distinct from the vesicular exanthema of swine virus (VESV) clade, which includes the extensively studied feline calicivirus (FCV). We have used cryogenic electron microscopy (cryo-EM) to determine the structure of the capsid of this small, icosahedral, positive-sense-RNA-containing virus. We show that the outer face of the dimeric capsomeres, which contains the receptor binding site and major immunodominant epitopes in all caliciviruses studied thus far, is quite different from that of FCV. This is a consequence of a 22-amino-acid insertion in the sequence of the FCV major capsid protein that forms a "cantilevered arm" that both plays an important role in receptor engagement and undergoes structural rearrangements thought to be important for genome delivery to the cytosol. Our data highlight a potentially important difference in the attachment and entry pathways employed by the different clades of the Vesivirus genus. IMPORTANCE Vesivirus 2117 has caused significant losses in manufacturing of biopharmaceutical products following contamination of cell cultures used in their production. We report the structure of the vesivirus 2117 capsid, the shell that encloses the virus's genome. Comparison of this structure with that of a related vesivirus, feline calicivirus (FCV), highlighted potentially important differences related to virus attachment and entry. Our findings suggest that these two viruses may bind differently to receptors at the host cell surface. We also show that a region of the capsid protein of FCV that rearranges following receptor engagement is not present in vesivirus 2117. These structural changes in the FCV capsid have been shown to allow the assembly of a portal-like structure that is hypothesized to deliver the viral genome to the cell's interior. Our data suggest that the 2117 portal assembly may employ a different means of anchoring to the outer face of the capsid.


Subject(s)
Capsid/metabolism , Vesivirus/metabolism , Animals , CHO Cells , Capsid Proteins/genetics , Cell Line , Cricetinae , Cricetulus , Cryoelectron Microscopy , Protein Structure, Quaternary/physiology , Virion/metabolism , Virus Attachment
7.
PLoS Biol ; 17(2): e3000151, 2019 02.
Article in English | MEDLINE | ID: mdl-30789895

ABSTRACT

Peer-reviewed journal publication is the main means for academic researchers in the life sciences to create a permanent public record of their work. These publications are also the de facto currency for career progress, with a strong link between journal brand recognition and perceived value. The current peer-review process can lead to long delays between submission and publication, with cycles of rejection, revision, and resubmission causing redundant peer review. This situation creates unique challenges for early career researchers (ECRs), who rely heavily on timely publication of their work to gain recognition for their efforts. Today, ECRs face a changing academic landscape, including the increased interdisciplinarity of life sciences research, expansion of the researcher population, and consequent shifts in employer and funding demands. The publication of preprints, publicly available scientific manuscripts posted on dedicated preprint servers prior to journal-managed peer review, can play a key role in addressing these ECR challenges. Preprinting benefits include rapid dissemination of academic work, open access, establishing priority or concurrence, receiving feedback, and facilitating collaborations. Although there is a growing appreciation for and adoption of preprints, a minority of all articles in life sciences and medicine are preprinted. The current low rate of preprint submissions in life sciences and ECR concerns regarding preprinting need to be addressed. We provide a perspective from an interdisciplinary group of ECRs on the value of preprints and advocate their wide adoption to advance knowledge and facilitate career development.


Subject(s)
Peer Review, Research/methods , Preprints as Topic , Research Personnel/psychology , Biomedical Research , Career Mobility , Humans , Periodicals as Topic
8.
BMC Biol ; 19(1): 195, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34496840

ABSTRACT

BACKGROUND: QconCATs are quantitative concatamers for proteomic applications that yield stoichiometric quantities of sets of stable isotope-labelled internal standards. However, changing a QconCAT design, for example, to replace poorly performing peptide standards has been a protracted process. RESULTS: We report a new approach to the assembly and construction of QconCATs, based on synthetic biology precepts of biobricks, making use of loop assembly to construct larger entities from individual biobricks. The basic building block (a Qbrick) is a segment of DNA that encodes two or more quantification peptides for a single protein, readily held in a repository as a library resource. These Qbricks are then assembled in a one tube ligation reaction that enforces the order of assembly, to yield short QconCATs that are useable for small quantification products. However, the DNA context of the short construct also allows a second cycle of loop assembly such that five different short QconCATs can be assembled into a longer QconCAT in a second, single tube ligation. From a library of Qbricks, a bespoke QconCAT can be assembled quickly and efficiently in a form suitable for expression and labelling in vivo or in vitro. CONCLUSIONS: We refer to this approach as the ALACAT strategy as it permits à la carte design of quantification standards. ALACAT methodology is a major gain in flexibility of QconCAT implementation as it supports rapid editing and improvement of QconCATs and permits, for example, substitution of one peptide by another.


Subject(s)
Proteins , Proteomics , Gene Library , Genetic Techniques , Peptides , Proteins/analysis
9.
J Biol Chem ; 294(11): 4259-4271, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30647130

ABSTRACT

Norovirus infections are a major cause of acute viral gastroenteritis and a significant burden on global human health. A vital process for norovirus replication is the processing of the nonstructural polyprotein by a viral protease into the viral components required to form the viral replication complex. This cleavage occurs at different rates, resulting in the accumulation of stable precursor forms. Here, we characterized how precursor forms of the norovirus protease accumulate during infection. Using stable forms of the protease precursors, we demonstrated that all of them are proteolytically active in vitro, but that when expressed in cells, their activities are determined by both substrate and protease localization. Although all precursors could cleave a replication complex-associated substrate, only a subset of precursors lacking the NS4 protein were capable of efficiently cleaving a cytoplasmic substrate. By mapping the full range of protein-protein interactions among murine and human norovirus proteins with the LUMIER assay, we uncovered conserved interactions between replication complex members that modify the localization of a protease precursor subset. Finally, we demonstrate that fusion to the membrane-bound replication complex components permits efficient cleavage of a fused substrate when active polyprotein-derived protease is provided in trans These findings offer a model for how norovirus can regulate the timing of substrate cleavage throughout the replication cycle. Because the norovirus protease represents a key target in antiviral therapies, an improved understanding of its function and regulation, as well as identification of interactions among the other nonstructural proteins, offers new avenues for antiviral drug design.


Subject(s)
Norovirus/enzymology , Norovirus/metabolism , Peptide Hydrolases/metabolism , Polyproteins/metabolism , Virus Replication , Animals , Caliciviridae Infections/metabolism , Caliciviridae Infections/virology , Cell Line , HeLa Cells , Humans , Mice , Norovirus/genetics , Peptide Hydrolases/genetics , Protein Binding , Virus Replication/genetics
10.
Nucleic Acids Res ; 46(10): 5269-5285, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29554348

ABSTRACT

Interferon-induced proteins with tetratricopeptide repeats (IFITs) are highly expressed during the cell-intrinsic immune response to viral infection. IFIT1 inhibits translation by binding directly to the 5' end of foreign RNAs, particularly those with non-self cap structures, precluding the recruitment of the cap-binding eukaryotic translation initiation factor 4F and ribosome recruitment. The presence of IFIT1 imposes a requirement on viruses that replicate in the cytoplasm to maintain mechanisms to avoid its restrictive effects. Interaction of different IFIT family members is well described, but little is known of the molecular basis of IFIT association or its impact on function. Here, we reconstituted different complexes of IFIT1, IFIT2 and IFIT3 in vitro, which enabled us to reveal critical aspects of IFIT complex assembly. IFIT1 and IFIT3 interact via a YxxxL motif present in the C-terminus of each protein. IFIT2 and IFIT3 homodimers dissociate to form a more stable heterodimer that also associates with IFIT1. We show for the first time that IFIT3 stabilizes IFIT1 protein expression, promotes IFIT1 binding to a cap0 Zika virus reporter mRNA and enhances IFIT1 translation inhibition. This work reveals molecular aspects of IFIT interaction and provides an important missing link between IFIT assembly and function.


Subject(s)
Carrier Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Protein Biosynthesis , Proteins/metabolism , Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Carrier Proteins/genetics , Chromatography, Gel , Genes, Reporter , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Proteins/genetics , RNA Caps/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins , Zika Virus/genetics
11.
Mol Cell Proteomics ; 16(11): 1990-2005, 2017 11.
Article in English | MEDLINE | ID: mdl-28851738

ABSTRACT

Bluetongue virus (BTV) causes infections in wild and domesticated ruminants with high morbidity and mortality and is responsible for significant economic losses in both developing and developed countries. BTV serves as a model for the study of other members of the Orbivirus genus. Previously, the importance of casein kinase 2 for BTV replication was demonstrated. To identify intracellular signaling pathways and novel host-cell kinases involved during BTV infection, the phosphoproteome of BTV infected cells was analyzed. Over 1000 phosphosites were identified using mass spectrometry, which were then used to determine the corresponding kinases involved during BTV infection. This analysis yielded protein kinase A (PKA) as a novel kinase activated during BTV infection. Subsequently, the importance of PKA for BTV infection was validated using a PKA inhibitor and activator. Our data confirmed that PKA was essential for efficient viral growth. Further, we showed that PKA is also required for infection of equid cells by African horse sickness virus, another member of the Orbivirus genus. Thus, despite their preference in specific host species, orbiviruses may utilize the same host signaling pathways during their replication.


Subject(s)
Bluetongue virus/physiology , Bluetongue/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Phosphoproteins/metabolism , Proteomics/methods , Animals , Bluetongue/virology , Gas Chromatography-Mass Spectrometry , HeLa Cells , Host-Pathogen Interactions , Humans , Protein Kinase Inhibitors/pharmacology , Sheep , Signal Transduction , Virus Replication
12.
Mol Cell Proteomics ; 16(4 suppl 1): S215-S229, 2017 04.
Article in English | MEDLINE | ID: mdl-28087593

ABSTRACT

Noroviruses produce viral RNAs lacking a 5' cap structure and instead use a virus-encoded viral protein genome-linked (VPg) protein covalently linked to viral RNA to interact with translation initiation factors and drive viral protein synthesis. Norovirus infection results in the induction of the innate response leading to interferon stimulated gene (ISG) transcription. However, the translation of the induced ISG mRNAs is suppressed. A SILAC-based mass spectrometry approach was employed to analyze changes to protein abundance in both whole cell and m7GTP-enriched samples to demonstrate that diminished host mRNA translation correlates with changes to the composition of the eukaryotic initiation factor complex. The suppression of host ISG translation correlates with the activity of the viral protease (NS6) and the activation of cellular caspases leading to the establishment of an apoptotic environment. These results indicate that noroviruses exploit the differences between viral VPg-dependent and cellular cap-dependent translation in order to diminish the host response to infection.


Subject(s)
Caliciviridae Infections/genetics , Norovirus/metabolism , Proteomics/methods , RNA Caps/metabolism , RNA, Messenger/metabolism , Viral Proteins/metabolism , Apoptosis , Caliciviridae Infections/immunology , Caliciviridae Infections/virology , Host-Pathogen Interactions , Humans , Immunity, Innate , Isotope Labeling/methods , Mass Spectrometry/methods , Norovirus/genetics , RNA, Viral/metabolism
13.
Article in English | MEDLINE | ID: mdl-29530860

ABSTRACT

Human norovirus (HuNoV) is a major cause of nonbacterial gastroenteritis worldwide, yet despite its impact on society, vaccines and antivirals are currently lacking. A HuNoV replicon system has been widely applied to the evaluation of antiviral compounds and has thus accelerated the process of drug discovery against HuNoV infection. Rupintrivir, an irreversible inhibitor of the human rhinovirus 3C protease, has been reported to inhibit the replication of the Norwalk virus replicon via the inhibition of the norovirus protease. Here we report, for the first time, the generation of rupintrivir-resistant human Norwalk virus replicon cells in vitro Sequence analysis revealed that these replicon cells contained amino acid substitutions of alanine 105 to valine (A105V) and isoleucine 109 to valine (I109V) in the viral protease NS6. The application of a cell-based fluorescence resonance energy transfer (FRET) assay for protease activity demonstrated that these substitutions were involved in the enhanced resistance to rupintrivir. Furthermore, we validated the effect of these mutations using reverse genetics in murine norovirus (MNV), demonstrating that a recombinant MNV strain with a single I109V substitution in the protease also showed reduced susceptibility to rupintrivir. In summary, using a combination of different approaches, we have demonstrated that, under the correct conditions, mutations in the norovirus protease that lead to the generation of resistant mutants can rapidly occur.


Subject(s)
Antiviral Agents/pharmacology , Isoxazoles/pharmacology , Norwalk virus/drug effects , Pyrrolidinones/pharmacology , 3C Viral Proteases , Amino Acid Sequence , Cell Line, Tumor , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Fluorescence Resonance Energy Transfer , Humans , Mutation , Norwalk virus/genetics , Phenylalanine/analogs & derivatives , Valine/analogs & derivatives , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/drug effects , Virus Replication/genetics
14.
Biochem J ; 474(21): 3615-3626, 2017 10 23.
Article in English | MEDLINE | ID: mdl-28931724

ABSTRACT

Eukaryotic cells use conserved multisubunit membrane tethering complexes, including CORVET (class C core vacuole/endosome tethering) and HOPS (homotypic fusion and vacuole protein sorting), to control the fusion of endomembranes. These complexes have been extensively studied in yeast, but to date there have been far fewer studies of metazoan CORVET and HOPS. Both of these complexes comprise six subunits: a common four-subunit core and two unique subunits. Once assembled, these complexes function to recognise specific endosomal membrane markers and facilitate SNARE-mediated membrane fusion. CORVET promotes the homotypic fusion of early endosomes, while HOPS promotes the fusion of lysosomes to late endosomes and autophagosomes. Many of the subunits of both CORVET and HOPS contain putative C-terminal zinc-finger domains. Here, the contribution of these domains to the assembly of the human CORVET and HOPS complexes has been examined. Using biochemical techniques, we demonstrate that the zinc-containing RING (really interesting new gene) domains of human VPS18 and VPS41 interact directly to form a stable heterodimer. In cells, these RING domains are able to integrate into endogenous HOPS, showing that the VPS18 RING domain is required to recruit VPS41 to the core complex subunits. Importantly, this mechanism is not conserved throughout eukaryotes, as yeast Vps41 does not contain a C-terminal zinc-finger motif. The subunit analogous to VPS41 in human CORVET is VPS8, in which the RING domain has an additional C-terminal segment that is predicted to be disordered. Both the RING and disordered C-terminal domains are required for integration of VPS8 into endogenous CORVET complexes, suggesting that HOPS and CORVET recruit VPS41 and VPS8 via distinct molecular interactions.


Subject(s)
Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/metabolism , HEK293 Cells , Humans , Multiprotein Complexes/genetics , Protein Domains , Vesicular Transport Proteins/genetics
15.
J Gen Virol ; 98(1): 68-76, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27902397

ABSTRACT

Vesivirus 2117 is an adventitious agent that, in 2009, was identified as a contaminant of Chinese hamster ovary cells propagated in bioreactors at a pharmaceutical manufacturing plant belonging to Genzyme. The consequent interruption in supply of Fabrazyme and Cerezyme (drugs used to treat Fabry and Gaucher diseases, respectively) caused significant economic losses. Vesivirus 2117 is a member of the Caliciviridae, a family of small icosahedral viruses encoding a positive-sense RNA genome. We have used cryo-electron microscopy and three-dimensional image reconstruction to calculate a structure of vesivirus 2117 virus-like particles as well as feline calicivirus and a chimeric sapovirus. We present a structural comparison of several members of the Caliciviridae, showing that the distal P domain of vesivirus 2117 is morphologically distinct from that seen in other known vesivirus structures. Furthermore, at intermediate resolutions, we found a high level of structural similarity between vesivirus 2117 and Caliciviridae from other genera: sapovirus and rabbit hemorrhagic disease virus. Phylogenetic analysis confirms vesivirus 2117 as a vesivirus closely related to canine vesiviruses. We postulate that morphological differences in virion structure seen between vesivirus clades may reflect differences in receptor usage.


Subject(s)
Capsid/ultrastructure , Lagovirus/ultrastructure , Sapovirus/ultrastructure , Vesivirus/ultrastructure , Animals , Cricetulus , Cryoelectron Microscopy , Imaging, Three-Dimensional , Phylogeny , RNA, Viral/genetics , Sequence Analysis, DNA , Vesivirus/genetics
16.
J Biol Chem ; 290(46): 27841-53, 2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26363064

ABSTRACT

The viral protease represents a key drug target for the development of antiviral therapeutics. Because many protease inhibitors mimic protease substrates, differences in substrate recognition between proteases may affect their sensitivity to a given inhibitor. Here we use a cell-based FRET sensor to investigate the activity of different norovirus proteases upon cleavage of various norovirus cleavage sites inserted into a linker region separating cyan fluorescent protein and yellow fluorescent protein. Using this system, we demonstrate that differences in substrate processing exist between proteases from human noroviruses (genogroups I (GI) and II) and the commonly used murine norovirus (MNV, genogroup V) model. These altered the cleavage efficiency of specific cleavage sites both within and between genogroups. The differences observed between these proteases may affect sensitivity to protease inhibitors and the suitability of MNV as a model system for testing such molecules against the human norovirus protease. Finally, we demonstrate that replacement of MNV polyprotein cleavage sites with the GI or GII equivalents, with the exception of the NS6-7 junction, leads to the production of infectious virus when the MNV NS6 protease, but not the GI or GII proteases, are present.


Subject(s)
Norovirus/enzymology , Peptide Hydrolases/metabolism , Polyproteins/metabolism , Proteolysis , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Amino Acid Substitution , Animals , Cell Line , Fluorescence Resonance Energy Transfer , Humans , Mice , Molecular Sequence Data , Norovirus/genetics , Peptide Hydrolases/chemistry , Peptide Hydrolases/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
18.
J Biol Chem ; 289(31): 21738-50, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24928504

ABSTRACT

Viruses have evolved a variety of mechanisms to usurp the host cell translation machinery to enable translation of the viral genome in the presence of high levels of cellular mRNAs. Noroviruses, a major cause of gastroenteritis in man, have evolved a mechanism that relies on the interaction of translation initiation factors with the virus-encoded VPg protein covalently linked to the 5' end of the viral RNA. To further characterize this novel mechanism of translation initiation, we have used proteomics to identify the components of the norovirus translation initiation factor complex. This approach revealed that VPg binds directly to the eIF4F complex, with a high affinity interaction occurring between VPg and eIF4G. Mutational analyses indicated that the C-terminal region of VPg is important for the VPg-eIF4G interaction; viruses with mutations that alter or disrupt this interaction are debilitated or non-viable. Our results shed new light on the unusual mechanisms of protein-directed translation initiation.


Subject(s)
Eukaryotic Initiation Factor-4G/metabolism , Genome, Viral , Norovirus/genetics , Protein Biosynthesis , Viral Proteins/physiology , Base Sequence , Chromatography, Affinity , DNA Primers , Polymerase Chain Reaction , Protein Binding , Proteomics , Viral Proteins/genetics , Viral Proteins/metabolism
19.
J Clin Microbiol ; 53(6): 1873-83, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25832298

ABSTRACT

Human noroviruses (HuNoVs) are a major cause of viral gastroenteritis, with an estimated 3 million cases per year in the United Kingdom. HuNoVs have recently been isolated from pet dogs in Europe (M. Summa, C.-H. von Bonsdorff, and L. Maunula, J Clin Virol 53:244-247, 2012, http://dx.doi.org/10.1016/j.jcv.2011.12.014), raising concerns about potential zoonotic infections. With 31% of United Kingdom households owning a dog, this could prove to be an important transmission route. To examine this risk, canine tissues were studied for their ability to bind to HuNoV in vitro. In addition, canine stool samples were analyzed for the presence of viral nucleic acid, and canine serum samples were tested for the presence of anti-HuNoV antibodies. The results showed that seven different genotypes of HuNoV virus-like particles (VLPs) can bind to canine gastrointestinal tissue, suggesting that infection is at least theoretically possible. Although HuNoV RNA was not identified in stool samples from 248 dogs, serological evidence of previous exposure to HuNoV was obtained in 43/325 canine serum samples. Remarkably, canine seroprevalence for different HuNoV genotypes mirrored the seroprevalence in the human population. Though entry and replication within cells have not been demonstrated, the canine serological data indicate that dogs produce an immune response to HuNoV, implying productive infection. In conclusion, this study reveals zoonotic implications for HuNoV, and to elucidate the significance of this finding, further epidemiological and molecular investigations will be essential.


Subject(s)
Caliciviridae Infections , Dogs/virology , Norovirus , Zoonoses , Animals , Antibodies, Viral/blood , Caliciviridae Infections/epidemiology , Caliciviridae Infections/veterinary , Caliciviridae Infections/virology , Feces/virology , Female , Gastrointestinal Tract/metabolism , Humans , Norovirus/genetics , Norovirus/isolation & purification , Norovirus/metabolism , Saliva/metabolism , Saliva/virology , Seroepidemiologic Studies , United Kingdom/epidemiology , Virion/metabolism , Zoonoses/epidemiology , Zoonoses/virology
20.
J Virol ; 87(17): 9486-500, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23637410

ABSTRACT

The coronavirus nucleocapsid (N) protein plays a multifunctional role in the virus life cycle, from regulation of replication and transcription and genome packaging to modulation of host cell processes. These functions are likely to be facilitated by interactions with host cell proteins. The potential interactome of the infectious bronchitis virus (IBV) N protein was mapped using stable isotope labeling with amino acids in cell culture (SILAC) coupled to a green fluorescent protein-nanotrap pulldown methodology and liquid chromatography-tandem mass spectrometry. The addition of the SILAC label allowed discrimination of proteins that were likely to specifically bind to the N protein over background binding. Overall, 142 cellular proteins were selected as potentially binding to the N protein, many as part of larger possible complexes. These included ribosomal proteins, nucleolar proteins, translation initiation factors, helicases, and hnRNPs. The association of selected cellular proteins with IBV N protein was confirmed by immunoblotting, cosedimentation, and confocal microscopy. Further, the localization of selected proteins in IBV-infected cells as well as their activity during virus infection was assessed by small interfering RNA-mediated depletion, demonstrating the functional importance of cellular proteins in the biology of IBV. This interactome not only confirms previous observations made with other coronavirus and IBV N proteins with both overexpressed proteins and infectious virus but also provides novel data that can be exploited to understand the interaction between the virus and the host cell.


Subject(s)
Host-Pathogen Interactions/physiology , Infectious bronchitis virus/physiology , Nucleocapsid Proteins/physiology , Animals , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins , Gene Knockdown Techniques , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , Infectious bronchitis virus/genetics , Nucleocapsid Proteins/genetics , Protein Binding , Proteome/genetics , Proteome/metabolism , RNA, Small Interfering/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Ribosomes/metabolism , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL