Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Biomech Eng ; 144(2)2022 02 01.
Article in English | MEDLINE | ID: mdl-34386814

ABSTRACT

Regarding the prevention of injuries and rehabilitation of the human hand, musculoskeletal simulations using an inverse dynamics approach allow for insights of the muscle recruitment and thus acting forces on the hand. Currently, several hand models from various research groups are in use, which are mainly validated by the comparison of numerical and anatomical moment arms. In contrast to this validation and model-building technique by cadaver studies, the aim of this study is to further validate a recently published hand model [1] by analyzing numerically calculated muscle activities in comparison to experimentally measured electromyographical signals of the muscles. Therefore, the electromyographical signals of 10 hand muscles of five test subjects performing seven different hand movements were measured. The kinematics of these tasks were used as input for the hand model, and the numerical muscle activities were computed. To analyze the relationship between simulated and measured activities, the time difference of the muscle on- and off-set points was calculated, which resulted in a mean on- and off-set time difference of 0.58 s between the experimental data and the model. The largest differences were detected for movements that mainly addressed the wrist. One major issue comparing simulated and measured muscle activities of the hand is cross-talk. Nevertheless, the results show that the hand model fits the experiment quite accurately despite some limitations and is a further step toward patient-specific modeling of the upper extremity.


Subject(s)
Hand , Models, Biological , Biomechanical Phenomena , Electromyography , Hand/physiology , Humans , Muscle, Skeletal/physiology , Upper Extremity
2.
Sensors (Basel) ; 21(4)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567769

ABSTRACT

The AnyBody Modeling System™ (AMS) is a musculoskeletal software simulation solution using inverse dynamics analysis. It enables the determination of muscle and joint forces for a given bodily motion. The recording of the individual movement and the transfer into the AMS is a complex and protracted process. Researches indicated that the contactless, visual Leap Motion Controller (LMC) provides clinically meaningful motion data for hand tracking. Therefore, the aim of this study was to integrate the LMC hand motion data into the AMS in order to improve the process of recording a hand movement. A Python-based interface between the LMC and the AMS, termed ROSE Motion, was developed. This solution records and saves the data of the movement as Biovision Hierarchy (BVH) data and AnyScript vector files that are imported into the AMS simulation. Setting simulation parameters, initiating the calculation automatically, and fetching results is implemented by using the AnyPyTools library from AnyBody. The proposed tool offers a rapid and easy-to-use recording solution for elbow, hand, and finger movements. Features include animation, cutting/editing, exporting the motion, and remote controlling the AMS for the analysis and presentation of musculoskeletal simulation results. Comparing the motion tracking results with previous studies, covering problems when using the LMC limit the correctness of the motion data. However, fast experimental setup and intuitive and rapid motion data editing strengthen the use of marker less systems as the herein presented compared to marker based motion capturing.


Subject(s)
Hand , Movement , Fingers , Humans , Motion , Software
3.
Pharm Res ; 33(6): 1337-50, 2016 06.
Article in English | MEDLINE | ID: mdl-26887679

ABSTRACT

PURPOSE: Aerosol particle deposition in the human nasal cavity is of high interest in particular for intranasal central nervous system (CNS) drug delivery via the olfactory cleft. The objective of this study was the development and comparison of a numerical and experimental model to investigate various parameters for olfactory particle deposition within the complex anatomical nasal geometry. METHODS: Based on a standardized nasal cavity, a computational fluid and particle dynamics (CFPD) model was developed that enables the variation and optimization of different parameters, which were validated by in vitro experiments using a constructed rapid-prototyped human nose model. RESULTS: For various flow rates (5 to 40 l/min) and particle sizes (1 to 10 µm), the airflow velocities, the calculated particle airflow patterns and the particle deposition correlated very well with the experiment. Particle deposition was investigated numerically by varying particle sizes at constant flow rate and vice versa assuming the particle size distribution of the used nebulizer. CONCLUSIONS: The developed CFPD model could be directly translated to the in vitro results. Hence, it can be applied for parameter screening and will contribute to the improvement of aerosol particle deposition at the olfactory cleft for CNS drug delivery in particular for biopharmaceuticals.


Subject(s)
Biopharmaceutics/methods , Computer Simulation , Models, Anatomic , Models, Biological , Nasal Absorption , Nasal Cavity/metabolism , Olfactory Bulb/metabolism , Pharmaceutical Preparations/administration & dosage , Technology, Pharmaceutical/methods , Administration, Intranasal , Aerosols , Female , Humans , Kinetics , Male , Nasal Cavity/anatomy & histology , Nasal Cavity/diagnostic imaging , Numerical Analysis, Computer-Assisted , Particle Size , Permeability , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Rheology , Tomography, X-Ray Computed
4.
J Clin Med ; 13(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38999488

ABSTRACT

Background: The healing potential of a fracture is determined by mechanical and biological factors. Simulation-based workflows can help assess these factors to assist in predicting non-unions. The aim of this study was the introduction of two use cases for a novel patient-specific simulation workflow based on clinically available information. Methods: The used software is an extension of the "Ulm Bone Healing model" and was applied in two cases with non-union development after fracture fixation to show its principal feasibility. The clinical and radiographic information, starting from initial treatment, were used to feed the simulation process. Results: The simulation predicted non-union development and axial deviation in a mechanically driven non-union. In the case of a biological non-union, a slow, incomplete healing course was correctly identified. However, the time offset in callus bridging was discordant between the simulation and the distinctly slower healing response in the clinical case. Conclusions: The simulation workflow presented in the two clinical use cases allowed for the identification of fractures at risk for impending non-union immediately after the initial fixation based on available clinical and radiographic information. Further validation in a large non-union cohort is needed to increase the model's precision, especially in biologically challenging cases, and show its validity as a screening instrument.

5.
J Clin Med ; 12(10)2023 May 14.
Article in English | MEDLINE | ID: mdl-37240567

ABSTRACT

As non-unions are still common, a predictive assessment of healing complications could enable immediate intervention before negative impacts for the patient occur. The aim of this pilot study was to predict consolidation with the help of a numerical simulation model. A total of 32 simulations of patients with closed diaphyseal femoral shaft fractures treated by intramedullary nailing (PFNA long, FRN, LFN, and DePuy Synthes) were performed by creating 3D volume models based on biplanar postoperative radiographs. An established fracture healing model, which describes the changes in tissue distribution at the fracture site, was used to predict the individual healing process based on the surgical treatment performed and full weight bearing. The assumed consolidation as well as the bridging dates were retrospectively correlated with the clinical and radiological healing processes. The simulation correctly predicted 23 uncomplicated healing fractures. Three patients showed healing potential according to the simulation, but clinically turned out to be non-unions. Four out of six non-unions were correctly detected as non-unions by the simulation, and two simulations were wrongfully diagnosed as non-unions. Further adjustments of the simulation algorithm for human fracture healing and a larger cohort are necessary. However, these first results show a promising approach towards an individualized prognosis of fracture healing based on biomechanical factors.

6.
Article in English | MEDLINE | ID: mdl-33300810

ABSTRACT

Musculoskeletal research questions regarding the prevention or rehabilitation of the hand can be addressed using inverse dynamics simulations when experiments are not possible. To date, no complete human hand model implemented in a holistic human body model has been fully developed. The aim of this work was to develop, implement, and validate a fully detailed hand model using the AnyBody Modelling System (AMS) (AnyBody, Aalborg, Denmark). To achieve this, a consistent multiple cadaver dataset, including all extrinsic and intrinsic muscles, served as a basis. Various obstacle methods were implemented to obtain with the correct alignment of the muscle paths together with the full range of motion of the fingers. These included tori, cylinders, and spherical ellipsoids. The origin points of the lumbrical muscles within the tendon of the flexor digitorum profundus added a unique feature to the model. Furthermore, the possibility of an entire patient-specific scaling based on the hand length and width were implemented in the model. For model validation, experimental datasets from the literature were used, which included the comparison of numerically calculated moment arms of the wrist, thumb, and index finger muscles. In general, the results displayed good comparability of the model and experimental data. However, the extrinsic muscles showed higher accordance than the intrinsic ones. Nevertheless, the results showed, that the proposed developed inverse dynamics hand model offers opportunities in a broad field of applications, where the muscles and joint forces of the forearm play a crucial role.

SELECTION OF CITATIONS
SEARCH DETAIL