Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Chemistry ; 30(5): e202302688, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37930277

ABSTRACT

In one-dimensional polycyclic aromatic hydrocarbons (PAHs) containing five- and six-membered rings fused together, one key question is whether the structures possess a quinoidal or aromatic diradical character. Here, we generate such PAHs by reversible oxidation of PAH-extended tetrathiafulvalenes (TTFs). Extended TTFs were thus prepared and studied for their geometrical properties (crystallography), redox properties, and UV/Vis/NIR/EPR characteristics as a function of charge state. The EPR measurements of radical cations showed unique features for each PAH-TTF. The dications, formally composed of fluoreno[3,2-b]fluorene and diindeno[1,2-b:1',2'-i]anthracene cores, were experimentally found to exhibit singlet ground states. For the latter, calculations reveal the closed shell, quinoid singlet state to be isoenergetic with the open shell singlet diradical. Each charge state exhibited unique optical properties with radical cations absorbing strongly in the NIR region with signatures from π-dimers for the large core. The experimental results were paralleled and supported by detailed computations, including spin density distribution calculations, EPR simulations, and nucleus independent chemical shift (NICS) xy scans.

2.
Chemistry ; 30(34): e202400322, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38629212

ABSTRACT

This study presents the synthesis and characterization of two fluorescent norbornadiene (NBD) photoswitches, each incorporating two conjugated pyrene units. Expanding on the limited repertoire of reported photoswitchable fluorescent NBDs, we explore their properties with a focus on applications in bioimaging of amyloid beta (Aß) plaques. While the fluorescence emission of the NBD decreases upon photoisomerization, aligning with what has been previously reported, for the first time we observed luminescence after irradiation of the quadricyclane (QC) isomer. We deduce how the observed emission is induced by photoisomerization to the excited state of the parent isomer (NBD) which is then the emitting species. Thorough characterizations including NMR, UV-Vis, fluorescence, X-ray structural analysis and density functional theory (DFT) calculations provide a comprehensive understanding of these systems. Notably, one NBD-QC system exhibits exceptional durability. Additionally, these molecules serve as effective fluorescent stains targeting Aß plaques in situ, with observed NBD/QC switching within the plaques. Molecular docking simulations explore NBD interactions with amyloid, unveiling novel binding modes. These insights mark a crucial advancement in the comprehension and design of future photochromic NBDs for bioimaging applications and beyond, emphasizing their potential in studying and addressing protein aggregates.


Subject(s)
Amyloid beta-Peptides , Fluorescent Dyes , Pyrenes , Fluorescent Dyes/chemistry , Pyrenes/chemistry , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Humans , Molecular Docking Simulation , Norbornanes/chemistry , Plaque, Amyloid/chemistry , Plaque, Amyloid/diagnostic imaging , Density Functional Theory , Isomerism , Spectrometry, Fluorescence
3.
Chemistry ; 27(32): 8315-8324, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-33856724

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) have found strong interest for their electronic properties and as model systems for graphene. While PAHs have been studied intensively as single units, here PAHs were constructed in ladder-type arrangements using cross-conjugated fulvalene and dithiafulvalene motifs as connecting units and moving forward a convenient synthetic approach for dimerizing (thio)ketones into olefins by the action of Lawesson's reagent. Some of the PAHs can also be regarded as "super-extended" tetrathiafulvalenes (TTFs) with some of the largest cores ever explored, being multi-redox systems that exhibit both reversible oxidations and reductions. Concomitant absorption redshifts were observed when expanding the ladder-type structures from one to two to three indenofluorene units, and optical and electrochemical HOMO-LUMO gaps were found to correlate linearly. Various conformations (and solid-state packing arrangements) were studied by X-ray crystallography and computations.

4.
Chemistry ; 27(48): 12437-12446, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34096662

ABSTRACT

Photoswitch triads comprising two dihydroazulene (DHA) units in conjugation with a central trans-azobenzene (AZB) unit were prepared in stepwise protocols starting from meta- and para-disubstituted azobenzenes. The para-connected triad had significantly altered optical properties and lacked the photoactivity of the separate photochromes. In contrast, for the meta-connected triad, all three photochromes could be photoisomerized to generate an isomer with two vinylheptafulvene (VHF) units and a cis-azobenzene unit. Ultrafast spectroscopy of the photoisomerizations revealed a fast DHA-to-VHF photoisomerization and a slower trans-to-cis AZB photoisomerization. This meta triad underwent thermal VHF-to-DHA back-conversion with a similar rate of all VHFs, independent of the identity of the neighboring units, and in parallel thermal cis-to-trans AZB conversion. The experimental observations were supported by computation (excitation spectra and orbital analysis of the transitions).


Subject(s)
Azo Compounds , Azulenes , Isomerism
SELECTION OF CITATIONS
SEARCH DETAIL