Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell ; 183(2): 377-394.e21, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32976798

ABSTRACT

We employed scRNA sequencing to extensively characterize the cellular landscape of human liver from development to disease. Analysis of ∼212,000 cells representing human fetal, hepatocellular carcinoma (HCC), and mouse liver revealed remarkable fetal-like reprogramming of the tumor microenvironment. Specifically, the HCC ecosystem displayed features reminiscent of fetal development, including re-emergence of fetal-associated endothelial cells (PLVAP/VEGFR2) and fetal-like (FOLR2) tumor-associated macrophages. In a cross-species comparative analysis, we discovered remarkable similarity between mouse embryonic, fetal-liver, and tumor macrophages. Spatial transcriptomics further revealed a shared onco-fetal ecosystem between fetal liver and HCC. Furthermore, gene regulatory analysis, spatial transcriptomics, and in vitro functional assays implicated VEGF and NOTCH signaling in maintaining onco-fetal ecosystem. Taken together, we report a shared immunosuppressive onco-fetal ecosystem in fetal liver and HCC. Our results unravel a previously unexplored onco-fetal reprogramming of the tumor ecosystem, provide novel targets for therapeutic interventions in HCC, and open avenues for identifying similar paradigms in other cancers and disease.


Subject(s)
Carcinoma, Hepatocellular/pathology , Endothelial Cells/metabolism , Tumor Microenvironment/genetics , Adult , Animals , Carcinoma, Hepatocellular/genetics , Cell Line , Disease Models, Animal , Endothelial Cells/pathology , Female , Folate Receptor 2/metabolism , Gene Expression Profiling/methods , Humans , Liver/pathology , Liver Neoplasms/genetics , Macrophages/metabolism , Male , Membrane Proteins/metabolism , Mice , Receptors, Notch/genetics , Receptors, Notch/metabolism , Signal Transduction/genetics , Transcriptome/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
2.
Mol Oncol ; 8(8): 1404-18, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24950801

ABSTRACT

The mitotic kinesin KIF11 (also called Eg5) plays critical roles in spindle functions. Although a number of small-molecule inhibitors of KIF11 are currently in clinical development, drug-resistance could be developed through compensation by another kinesin called KIF15. Using a newly developed infrared-based cell system, we discovered that the effectiveness of one of the latest generations of KIF11 inhibitor (SB743921) could be enhanced with several inhibitors of Aurora A kinase. Evidence including live-cell imaging and isobologram analysis indicated that targeting KIF11 and Aurora A together promoted monoastral spindle formation and mitotic catastrophe synergistically, supporting a model of parallel pathways of centrosome regulation by Aurora A and KIF11. We also developed a KIF15-dependent SB743921-resistance cell model. Significantly, the drug-resistance could also be overcome with Aurora A inhibitors. These results provide a molecular basis for increasing the effectiveness of Aurora A and KIF11 inhibitors and tackling problems of drug resistance.


Subject(s)
Aurora Kinase A/metabolism , Kinesins/metabolism , Aurora Kinase A/genetics , Benzamides/pharmacology , Chromones/pharmacology , Drug Resistance , Drug Synergism , Flow Cytometry , HeLa Cells , Humans , Kinesins/genetics , Microscopy, Fluorescence , Mitosis/drug effects , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL