Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Scand J Immunol ; 99(1): e13328, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38441277

ABSTRACT

Calcineurin inhibitors have been found to exhibit a preventive role against neuroinflammation, which represents a crucial underlying mechanism in neurodegenerative diseases (ND). Additionally, they possess suppressive effects on the activation of apoptotic pathways, which constitute another mechanism underlying such diseases. Given that pimecrolimus, a calcineurin inhibitor, impedes the synthesis of pro-inflammatory cytokines, such as interleukin (IL)-2, IL-4, and IL-10, and influences apoptotic processes, it is noteworthy to test its potential neuroprotective properties. Thus, the objective of this investigation was to assess the potential protective effects of pimecrolimus against the degenerative consequences of both microglial secretomes and hydrogen peroxide (H2O2), an oxidant agent. The survival rates of HMC3 microglia cells, neuron-like differentiated SH-SY5Y (d-SH-SY5Y) cells, and their co-culture were determined using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) method. Furthermore, the levels of pro-inflammatory cytokines IL-1ß and IL-6, and anti-inflammatory cytokine IL-10 were measured using ELISA kits, besides total antioxidant and oxidant capacities in conditioned media of cells. Additionally, the effect of pimecrolimus on neurite length in these cell groups was evaluated through morphological observations. This study revealed, for the first time, that pimecrolimus exerts preventive effects on neurodegenerative processes by virtue of its anti-inflammatory and -antioxidant activities. It holds promise as a potential treatment option for ND.


Subject(s)
Antioxidants , Neuroblastoma , Tacrolimus/analogs & derivatives , Humans , Antioxidants/pharmacology , Hydrogen Peroxide , Interleukin-10 , Microglia , Secretome , Neurons , Oxidants , Cytokines , Anti-Inflammatory Agents/pharmacology
2.
Biomed Res Int ; 2013: 932391, 2013.
Article in English | MEDLINE | ID: mdl-24078929

ABSTRACT

Probiotics are ingested live microbes that can modify intestinal microbial populations in a way that benefits the host. The interest in probiotic preventative/therapeutic potential in allergic diseases stemmed from the fact that probiotics have been shown to improve intestinal dysbiosis and permeability and to reduce inflammatory cytokines in human and murine experimental models. Enhanced presence of probiotic bacteria in the intestinal microbiota is found to correlate with protection against allergy. Therefore, many studies have been recently designed to examine the efficacy of probiotics, but the literature on the allergic skin disorders is still very scarce. Here, our objective is to summarize and evaluate the available knowledge from randomized or nonrandomized controlled trials of probiotic use in allergic skin conditions. Clinical improvement especially in IgE-sensitized eczema and experimental models such as atopic dermatitis-like lesions (trinitrochlorobenzene and picryl chloride sensitizations) and allergic contact dermatitis (dinitrofluorobenzene sensitization) has been reported. Although there is a very promising evidence to recommend the addition of probiotics into foods, probiotics do not have a proven role in the prevention or the therapy of allergic skin disorders. Thus, being aware of possible measures, such as probiotics use, to prevent/heal atopic diseases is essential for the practicing allergy specialist.


Subject(s)
Hypersensitivity/drug therapy , Hypersensitivity/prevention & control , Probiotics/pharmacology , Probiotics/therapeutic use , Skin/drug effects , Skin/pathology , Animals , Clinical Trials as Topic , Disease Models, Animal , Humans
SELECTION OF CITATIONS
SEARCH DETAIL