Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters

Publication year range
1.
J Clin Monit Comput ; 38(1): 89-100, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37863862

ABSTRACT

PURPOSE: This systematic review of randomized-controlled trials (RCTs) with meta-analyses aimed to compare the effects on intraoperative arterial oxygen tension to inspired oxygen fraction ratio (PaO2/FiO2), exerted by positive end-expiratory pressure (PEEP) individualized trough electrical impedance tomography (EIT) or esophageal pressure (Pes) assessment (intervention) vs. PEEP not tailored on EIT or Pes (control), in patients undergoing abdominal or pelvic surgery with an open or laparoscopic/robotic approach. METHODS: PUBMED®, EMBASE®, and Cochrane Controlled Clinical trials register were searched for observational studies and RCTs from inception to the end of August 2022. Inclusion criteria were: RCTs comparing PEEP titrated on EIT/Pes assessment vs. PEEP not individualized on EIT/Pes and reporting intraoperative PaO2/FiO2. Two authors independently extracted data from the enrolled investigations. Data are reported as mean difference and 95% confidence interval (CI). RESULTS: Six RCTs were included for a total of 240 patients undergoing general anesthesia for surgery, of whom 117 subjects in the intervention group and 123 subjects in the control group. The intraoperative mean PaO2/FiO2 was 69.6 (95%CI 32.-106.4 ) mmHg higher in the intervention group as compared with the control group with 81.4% between-study heterogeneity (p < 0.01). However, at meta-regression, the between-study heterogeneity diminished to 44.96% when data were moderated for body mass index (estimate 3.45, 95%CI 0.78-6.11, p = 0.011). CONCLUSIONS: In patients undergoing abdominal or pelvic surgery with an open or laparoscopic/robotic approach, PEEP personalized by EIT or Pes allowed the achievement of a better intraoperative oxygenation compared to PEEP not individualized through EIT or Pes. PROSPERO REGISTRATION NUMBER: CRD 42021218306, 30/01/2023.


Subject(s)
Positive-Pressure Respiration , Tomography, X-Ray Computed , Humans , Electric Impedance , Randomized Controlled Trials as Topic , Positive-Pressure Respiration/methods , Oxygen
2.
Int J Mol Sci ; 24(19)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37834361

ABSTRACT

Circulating extracellular vesicles (EVs) may play a pathophysiological role in the onset of complications of subarachnoid hemorrhage (SAH), potentially contributing to the development of vasospasm (VP). In this study, we aimed to characterize circulating EVs in SAH patients and examine their effects on endothelial and smooth muscle cells (SMCs). In a total of 18 SAH patients, 10 with VP (VP), 8 without VP (NVP), and 5 healthy controls (HC), clinical variables were recorded at different time points. EVs isolated from plasma samples were characterized and used to stimulate human vascular endothelial cells (HUVECs) and SMCs. We found that EVs from SAH patients expressed markers of T-lymphocytes and platelets and had a larger size and a higher concentration compared to those from HC. Moreover, EVs from VP patients reduced cell viability and mitochondrial membrane potential in HUVECs and increased oxidants and nitric oxide (NO) release. Furthermore, EVs from SAH patients increased intracellular calcium levels in SMCs. Altogether, our findings reveal an altered pattern of circulating EVs in SAH patients, suggesting their pathogenic role in promoting endothelial damage and enhancing smooth muscle reactivity. These results have significant implications for the use of EVs as potential diagnostic/prognostic markers and therapeutic tools in SAH management.


Subject(s)
Extracellular Vesicles , Subarachnoid Hemorrhage , Vasospasm, Intracranial , Humans , Subarachnoid Hemorrhage/complications , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Blood Platelets/metabolism , Vasospasm, Intracranial/metabolism
3.
Neuropathol Appl Neurobiol ; 47(5): 664-678, 2021 08.
Article in English | MEDLINE | ID: mdl-33393119

ABSTRACT

BACKGROUND: Autophagic vacuolar myopathies (AVMs) are an emerging group of heterogeneous myopathies sharing histopathological features on muscle pathology, in which autophagic vacuoles are the pathognomonic morphologic hallmarks. Glycogen storage disease type II (GSDII) caused by lysosomal acid α-glucosidase (GAA) deficiency is the best-characterised AVM. AIMS: This study aimed to investigate the mutational profiling of seven neuromuscular outpatients sharing clinical, myopathological and biochemical findings with AVMs. METHODS: We applied a diagnostic protocol, recently published by our research group for suspected late-onset GSDII (LO-GSDII), including counting PAS-positive lymphocytes on blood smears, dried blood spot (DBS)-GAA, muscle biopsy histological and immunofluorescence studies, GAA activity assay and expression studies on muscle homogenate, GAA sequencing, GAA multiplex ligation-dependent probe amplification (MLPA) and whole exome sequencing (WES). RESULTS: The patients had a limb girdle-like muscular pattern with persistent hyperCKaemia; vacuolated PAS-positive lymphocytes, glycogen accumulation and impaired autophagy at muscle biopsy. Decreased GAA activity was also measured. While GAA sequencing identified no pathogenic mutations, WES approach allowed us to identify for each patient an unexpected mutational pattern in genes cooperating in lysosomal-autophagic machinery, some of which have never been linked to human diseases. CONCLUSIONS: Our data suggest that reduced GAA activity may occur in any condition of impaired autophagy and that WES approach is advisable in all genetically undefined cases of autophagic myopathy. Therefore, deficiency of GAA activity and PAS-positive lymphocytes should be considered as AVM markers together with LC3/p62-positive autophagic vacuoles.


Subject(s)
Autophagy/genetics , Genotype , Lysosomal Storage Diseases/pathology , Muscular Diseases/pathology , Phenotype , Autophagy/physiology , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/pathology , Humans , Lysosomal Storage Diseases/genetics , Lysosomes/metabolism , Muscular Diseases/genetics , Mutation/genetics , Exome Sequencing/methods , alpha-Glucosidases/genetics , alpha-Glucosidases/metabolism
4.
Crit Care ; 25(1): 268, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34330320

ABSTRACT

BACKGROUND: Noninvasive respiratory support (NIRS) has been diffusely employed outside the intensive care unit (ICU) to face the high request of ventilatory support due to the massive influx of patients with acute respiratory failure (ARF) caused by coronavirus-19 disease (COVID-19). We sought to summarize the evidence on clinically relevant outcomes in COVID-19 patients supported by NIV outside the ICU. METHODS: We searched PUBMED®, EMBASE®, and the Cochrane Controlled Clinical trials register, along with medRxiv and bioRxiv repositories for pre-prints, for observational studies and randomized controlled trials, from inception to the end of February 2021. Two authors independently selected the investigations according to the following criteria: (1) observational study or randomized clinical trials enrolling ≥ 50 hospitalized patients undergoing NIRS outside the ICU, (2) laboratory-confirmed COVID-19, and (3) at least the intra-hospital mortality reported. Preferred Reporting Items for Systematic reviews and Meta-analysis guidelines were followed. Data extraction was independently performed by two authors to assess: investigation features, demographics and clinical characteristics, treatments employed, NIRS regulations, and clinical outcomes. Methodological index for nonrandomized studies tool was applied to determine the quality of the enrolled studies. The primary outcome was to assess the overall intra-hospital mortality of patients under NIRS outside the ICU. The secondary outcomes included the proportions intra-hospital mortalities of patients who underwent invasive mechanical ventilation following NIRS failure and of those with 'do-not-intubate' (DNI) orders. RESULTS: Seventeen investigations (14 peer-reviewed and 3 pre-prints) were included with a low risk of bias and a high heterogeneity, for a total of 3377 patients. The overall intra-hospital mortality of patients receiving NIRS outside the ICU was 36% [30-41%]. 26% [21-30%] of the patients failed NIRS and required intubation, with an intra-hospital mortality rising to 45% [36-54%]. 23% [15-32%] of the patients received DNI orders with an intra-hospital mortality of 72% [65-78%]. Oxygenation on admission was the main source of between-study heterogeneity. CONCLUSIONS: During COVID-19 outbreak, delivering NIRS outside the ICU revealed as a feasible strategy to cope with the massive demand of ventilatory assistance. REGISTRATION: PROSPERO, https://www.crd.york.ac.uk/prospero/ , CRD42020224788, December 11, 2020.


Subject(s)
COVID-19/therapy , Noninvasive Ventilation , Respiratory Distress Syndrome/therapy , COVID-19/mortality , Continuous Positive Airway Pressure , Hospital Mortality , Humans , Intensive Care Units , Intubation/statistics & numerical data , Observational Studies as Topic , Randomized Controlled Trials as Topic , Respiration, Artificial , Respiratory Distress Syndrome/virology
5.
Int J Mol Sci ; 22(7)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33807278

ABSTRACT

Pompe disease is an autosomal recessive disorder caused by a deficiency in the enzyme acid alpha-glucosidase. The late-onset form of Pompe disease (LOPD) is characterized by a slowly progressing proximal muscle weakness, often involving respiratory muscles. In LOPD, the levels of GAA enzyme activity and the severity of the clinical pictures may be highly variable among individuals, even in those who harbour the same combination of GAA mutations. The result is an unpredictable genotype-phenotype correlation. The purpose of this study was to identify the genetic factors responsible for the progression, severity and drug response in LOPD. We report here on a detailed clinical, morphological and genetic study, including a whole exome sequencing (WES) analysis of 11 adult LOPD siblings belonging to two Italian families carrying compound heterozygous GAA mutations. We disclosed a heterogeneous pattern of myopathic impairment, associated, among others, with cardiac defects, intracranial vessels abnormality, osteoporosis, vitamin D deficiency, obesity and adverse response to enzyme replacement therapy (ERT). We identified deleterious variants in the genes involved in autophagy, immunity and bone metabolism, which contributed to the severity of the clinical symptoms observed in the LOPD patients. This study emphasizes the multisystem nature of LOPD and highlights the polygenic nature of the complex phenotype disclosed in these patients.


Subject(s)
Autophagy/genetics , Glycogen Storage Disease Type II/genetics , alpha-Glucosidases/genetics , Adult , Aged , Autophagy/physiology , Enzyme Replacement Therapy/methods , Family , Female , Genetic Variation/genetics , Humans , Italy , Male , Middle Aged , Muscle, Skeletal/metabolism , Mutation , Pedigree , Respiratory Muscles , Siblings , alpha-Glucosidases/metabolism
6.
Am J Med Genet A ; 182(1): 176-182, 2020 01.
Article in English | MEDLINE | ID: mdl-31609081

ABSTRACT

Dominant Optic Atrophy and Deafness (DOAD) may be associated with one or more of the following disorders such as myopathy, progressive external ophthalmoplegia, peripheral neuropathy, and cerebellar atrophy ("DOA-plus"). Intra- and interfamilial variability of the "DOA-plus" phenotype is frequently observed in the majority of the patients carrying the same mutation in the OPA1 gene. We are describing two familial cases of "DOA-plus" carrying the same c.1334G>A (p.Arg445His) mutation in OPA1 and disclosing different clinical, pathological and biochemical features. The two patients showed different expression levels of the mitochondrial OMI/HTRA2 molecule, which acts as a mitochondrial stress sensor and has been described to interplay with OPA1 in in vitro studies. Our data offer the cue to inquire the role of OMI/HTRA2 as a modifier gene in determining the "DOAplus" phenotype variability.


Subject(s)
Deafness/genetics , GTP Phosphohydrolases/genetics , High-Temperature Requirement A Serine Peptidase 2/genetics , Optic Atrophy, Autosomal Dominant/genetics , Adult , Deafness/physiopathology , Female , Gene Expression Regulation/genetics , Genetic Predisposition to Disease , Humans , Middle Aged , Mitochondria/genetics , Mitochondria/metabolism , Muscular Diseases/genetics , Muscular Diseases/physiopathology , Mutation/genetics , Ophthalmoplegia, Chronic Progressive External/genetics , Ophthalmoplegia, Chronic Progressive External/physiopathology , Optic Atrophy, Autosomal Dominant/physiopathology , Pedigree , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/physiopathology
7.
Am J Hum Genet ; 98(2): 275-86, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26849110

ABSTRACT

Paget disease of bone (PDB) is a skeletal disorder characterized by focal abnormalities of bone remodeling, which result in enlarged and deformed bones in one or more regions of the skeleton. In some cases, the pagetic tissue undergoes neoplastic transformation, resulting in osteosarcoma and, less frequently, in giant cell tumor of bone (GCT). We performed whole-exome sequencing in a large family with 14 PDB-affected members, four of whom developed GCT at multiple pagetic skeletal sites, and we identified the c.2810C>G (p.Pro937Arg) missense mutation in the zinc finger protein 687 gene (ZNF687). The mutation precisely co-segregated with the clinical phenotype in all affected family members. The sequencing of seven unrelated individuals with GCT associated with PDB (GCT/PDB) identified the same mutation in all individuals, unravelling a founder effect. ZNF687 is highly expressed during osteoclastogenesis and osteoblastogenesis and is dramatically upregulated in the tumor tissue of individuals with GCT/PDB. Interestingly, our preliminary findings showed that ZNF687, indicated as a target gene of the NFkB transcription factor by ChIP-seq analysis, is also upregulated in the peripheral blood of PDB-affected individuals with (n = 5) or without (n = 6) mutations in SQSTM1, encouraging additional studies to investigate its potential role as a biomarker of PDB risk.


Subject(s)
Gene Expression Regulation, Neoplastic , Giant Cell Tumors/genetics , Osteitis Deformans/genetics , Zinc Fingers/genetics , Amino Acid Sequence , Animals , Child , Exons , Female , Founder Effect , Humans , Male , Molecular Sequence Data , Mutation, Missense , Osteoclasts/metabolism , Pedigree , Up-Regulation , Zebrafish/genetics
8.
J Cell Physiol ; 233(8): 5829-5837, 2018 08.
Article in English | MEDLINE | ID: mdl-29215735

ABSTRACT

Autosomal recessive Pompe disease is a lysosomal disorder caused by mutations of the acid-α-glucosidase (GAA) gene. Deficiency of GAA enzyme leads to glycogen accumulation and autophagy impairment in cardiac and skeletal muscles, but also in lymphocytes. Since an effective therapy is available, a rapid, sensitive, and specific test is crucial to early identify affected subjects. Number of lymphocytes containing PAS-positive vacuoles was evaluated on blood films from 72 consecutive adult patients with hyperckemia and/or muscle weakness, 13 genetically confirmed late-onset-Pompe-disease (LOPD) and 13 of their offspring. GAA activity, measured on dried blood spot (DBS) in all patients inversely correlated with number of PAS-positive lymphocytes. More than 4 PAS-positive lymphocytes were found in 11 out of the 72 patients (6 new diagnosis of LOPD, 3 different glycogen storage myopathies, 1 glucose-6-phosphate dehydrogenase deficiency, 1 caveolinopathy), in all 13 LOPD patients and in the 13 LOPD offspring. These latter resulted to have all a single GAA mutation but low GAA levels. Immunostaining with the autophagy markers LC3 and p62 confirmed the autophagic nature of lymphocytes vacuoles. ROC curve assessment of PAS-positive lymphocytes disclosed 100% of sensitivity and 94% of specificity in recognizing both compound heterozygous and heterozygous GAA carriers. The other myopathies with more than 4 PAS-positive lymphocytes appeared to be all related to impaired autophagy, which seems to be responsible of PAS-positive vacuolated lymphocytes formation. Quantification of PAS-positive lymphocytes in blood films is useful to identify autophagic vacuolar myopathies and should be routinely used as first level test for Pompe disease.


Subject(s)
Glycogen Storage Disease Type II/diagnosis , Glycogen Storage Disease Type II/pathology , Lymphocytes/metabolism , Vacuoles/pathology , alpha-Glucosidases/genetics , Adolescent , Adult , Aged , Autophagy/physiology , Child , Female , Humans , Lysosomes/pathology , Male , Middle Aged , Muscle, Skeletal/pathology , Young Adult
9.
BMC Cancer ; 18(1): 358, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29609578

ABSTRACT

BACKGROUND: Giant Cell Tumour of Bone (GCT) is a locally aggressive primary bone tumour that usually occurs at the epiphyses of the long bones of the appendicular skeleton with a tendency to recurrence. Recurrent somatic H3F3A mutations have been described in 92% of GCT cases. GCTs involving the Clivus are extremely rare lesions and less than 15 cases are described in the literature. They represent a surgery challenge and are easily misdiagnosed. Our aim was to reveal if the genetic bases underlying Clival GCTs were the same of GCTs of long bones to improve the diagnosis and treatment. METHODS: The targeted somatic sequencing of GCT-related genes (H3F3A, H3F3B, IDH1, IDH2 and ZNF687) was performed on Clival GCT biopsies of two different cases. Histological analyses on the same tissues were used to detect the neoplastic population and its expression profile. RESULTS: Sanger sequencing revealed that both patients were positive for the p.Gly34Trp mutation in the H3F3A gene. Immunofluorescence assay using monoclonal antibody, specifically detecting the mutant H3.3, highlighted that the mutation only involved the mononuclear cell population and not the multinucleated giant cells. Moreover, immunohistochemistry assay showed that RANKL was highly expressed by the stromal cells within Clival GCT, mimicking what happens in GCT of the long bones. In addition, systematic literature review allowed us to generate a histology-based diagnostic algorithm of the most common clival lesions. CONCLUSIONS: We conclude that the Clival GCT is genetically defined by somatic mutation in the H3F3A gene, linking it to the GCT of long bones. The similarity with GCTs of long bones let us to hypothesize the utility of Denosumab therapy (already effective for GCTs) in these surgically challenging cases. Moreover, H3F3A genetic screening can be combined to the histological analysis to differentiate GCTs from morphologically similar giant cell-rich sarcomas, while the histological diagnostic algorithm could help the differential diagnosis of other clival lesions.


Subject(s)
Biomarkers, Tumor , Cranial Fossa, Posterior/pathology , Giant Cell Tumor of Bone/diagnosis , Giant Cell Tumor of Bone/genetics , Histones/genetics , Mutation , Algorithms , Biopsy , Cranial Fossa, Posterior/metabolism , DNA Mutational Analysis , Diagnosis, Differential , Female , Giant Cell Tumor of Bone/metabolism , Histones/metabolism , Humans , Immunohistochemistry , Magnetic Resonance Imaging , Middle Aged , RANK Ligand/genetics , RANK Ligand/metabolism , Stromal Cells/metabolism , Stromal Cells/pathology , Tomography, X-Ray Computed
10.
Hum Genomics ; 11(1): 18, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28764803

ABSTRACT

BACKGROUND: Autosomal recessive forms of retinitis punctata albescens (RPA) have been described. RPA is characterized by progressive retinal degeneration due to alteration in visual cycle and consequent deposit of photopigments in retinal pigment epithelium. Five loci have been linked to RPA onset. Among these, the retinaldehyde-binding protein 1 gene, RLBP1, is the most frequently involved and several founder mutations were reported. We report results of a genetic molecular investigation performed on a large Sicilian family in which appears a young woman with RPA. RESULTS: The proband is in homozygous condition for a novel RLBP1 single-pair deletion, and her healthy parents, both heterozygous, are not consanguineous. Thenovelc.398delC (p.P133Qfs*258) involves the exon 6 and leads to a premature stop codon, resulting in a truncated protein entirely missing of CRAL-TRIO lipid-binding domain. Pedigree analysis showed other non-consanguineous relatives heterozygous for the same mutation in the family. Extension of mutation research in the native town of the proband revealed its presence also in healthy subjects, in a heterozygous condition. CONCLUSIONS: A novel RLBP1 truncating mutation was detected in a young girl affected by RPA. Although her parents are not consanguineous, the mutation was observed in a homozygous condition. Being them native of the same small Sicilian town of Fiumedinisi, the hypothesis of a geographical area-related mutation was assessed and confirmed.


Subject(s)
Carrier Proteins/genetics , Mutation , Retinal Diseases/genetics , Adult , Base Sequence , Carrier Proteins/chemistry , DNA Mutational Analysis , Female , Geography , Heterozygote , Homozygote , Humans , Male , Pedigree , Protein Conformation
11.
J Med Genet ; 54(10): 710-720, 2017 10.
Article in English | MEDLINE | ID: mdl-28735299

ABSTRACT

BACKGROUND: The laminin alpha 5 gene (LAMA5) plays a master role in the maintenance and function of the extracellular matrix (ECM) in mammalian tissues, which is critical in developmental patterning, stem cell niches, cancer and genetic diseases. Its mutations have never been reported in human disease so far. The aim of this study was to associate the first mutation in LAMA5 gene to a novel multisystem syndrome. METHODS: A detailed characterisation of a three-generation family, including clinical, biochemical, instrumental and morphological analysis, together with genetics and expression (WES and RNAseq) studies, was performed. RESULTS: The heterozygous LAMA5 mutation c.9418G>A (p.V3140M) was associated with skin anomalies, impaired scarring, night blindness, muscle weakness, osteoarthritis, joint and internal organs ligaments laxity, malabsorption syndrome and hypothyroidism. We demonstrated that the mutation alters the amount of LAMA5 peptides likely derived from protein cleavage and perturbs the activation of the epithelial-mesenchymal signalling, producing an unbalanced expression of Sonic hedgehog and GLI1, which are upregulated in cells from affected individuals, and of ECM proteins (COL1A1, MMP1 and MMP3), which are strongly inhibited. Studies carried out using human skin biopsies showed alteration of dermal papilla with a reduction of the germinative layer and an early arrest of hair follicle downgrowth. The knock-in mouse model, generated in our laboratory, shows similar changes in the tissues studied so far. CONCLUSIONS: This is the first report of a disease phenotype associated with LAMA5 mutation in humans.


Subject(s)
Connective Tissue Diseases/genetics , Extracellular Matrix/physiology , Laminin/genetics , Mutation , Animals , Eye Diseases/genetics , Female , Gene Knock-In Techniques , Humans , Male , Mice , Muscular Diseases/genetics , Pedigree , Phenotype , Skin Abnormalities/genetics , Syndrome
12.
BMC Complement Altern Med ; 18(1): 63, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29448931

ABSTRACT

BACKGROUND: The thyroid gland is one of the largest endocrine glands in the body. The vast majority of TCs (> 90%) originate from follicular cells and are defined as differentiated thyroid cancers (DTC) and the two histological subtypes are the papillary TC with its variants and the follicular TC. Curcumin possesses a wide variety of biological functions, and thanks to its properties, it has gained considerable attention due to its profound medicinal values (Prasad, Gupta, Tyagi, and Aggarwal, Biotechnol Adv 32:1053-1064, 2014). We have undertaken the present work in order to define the possible role of curcumin in modulating the genetic expression of cell markers and to understand the effectiveness of this nutraceutical in modulating the regression of cancer phenotype. METHODS: As a template we used the TPC-1 cells treated with the different extracts of turmeric, and examined the levels of expression of different markers (proliferative, inflammatory, antioxidant, apoptotic). RESULTS: Treatment with the three different curcumin extracts displays anti-inflammatory, antioxidant properties and it is able to influence cell cycle with slightly different effects upon the extracts. Furthermore curcumin is able to influence cell metabolic activity vitality. CONCLUSIONS: In conclusion curcumin has the potential to be developed as a safe therapeutic but further studies are needed to verify its antitumor ability in vivo.


Subject(s)
Carcinoma, Papillary/drug therapy , Curcuma/chemistry , Curcumin/pharmacology , Thyroid Neoplasms/drug therapy , Apoptosis/drug effects , Carcinoma, Papillary/genetics , Carcinoma, Papillary/metabolism , Carcinoma, Papillary/physiopathology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Thyroid Cancer, Papillary , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/physiopathology
13.
Biochim Biophys Acta ; 1842(7): 992-1000, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24642144

ABSTRACT

SQSTM1 mutations are common in patients with Paget disease of bone (PDB), with most affecting the C-terminal ubiquitin-associated (UBA) domain of the SQSTM1 protein. We performed structural and functional analyses of two UBA domain mutations, an I424S mutation relatively common in UK PDB patients, and an A427D mutation associated with a severe phenotype in Southern Italian patients. Both impaired SQSTM1's ubiquitin-binding function in pull-down assays and resulted in activation of basal NF-κB signalling, compared to wild-type, in reporter assays. We found evidence for a relationship between the ability of different UBA domain mutants to activate NF-κB signalling in vitro and number of affected sites in vivo in 1152 PDB patients from the UK and Italy, with A427D-SQSTM1 producing the greatest level of activation (relative to wild-type) of all PDB mutants tested to date. NMR and isothermal titration calorimetry studies were able to demonstrate that I424S is associated with global structural changes in the UBA domain, resulting in 10-fold weaker UBA dimer stability than wild-type and reduced ubiquitin-binding affinity of the UBA monomer. Our observations provide insights into the role of SQSTM1-mediated NF-κB signalling in PDB aetiology, and demonstrate that different mutations in close proximity within loop 2/helix 3 of the SQSTM1 UBA domain exert distinct effects on protein structure and stability, including indirect effects at the UBA/ubiquitin-binding interface.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Osteitis Deformans/genetics , Adaptor Proteins, Signal Transducing/chemistry , Cell Line , Genetic Predisposition to Disease , HEK293 Cells , Humans , Models, Molecular , Mutation , NF-kappa B/genetics , NF-kappa B/metabolism , Osteitis Deformans/metabolism , Protein Binding , Protein Structure, Tertiary , Sequestosome-1 Protein , Signal Transduction , Ubiquitin/genetics , Ubiquitin/metabolism
14.
J Neurochem ; 135(6): 1123-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26478990

ABSTRACT

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic condition caused by dominant loss-of-function mutations of the tumor suppressor gene NF1 that encodes neurofibromin, a negative regulator of RAS activity. Mutation analysis of NF1 located at 17q11.2 has been hampered by the large size of the gene, the high rate of new mutations, the lack of mutational clustering, and the presence of several homologous loci. To date, about 80% of the reported NF1 mutations are predicted to result in protein truncation, but very few studies have correlated the causative NF1 mutation with its effect at the protein level. We evaluated a novel diagnostic method to detect truncated forms of neurofibromin in a large cohort of unrelated subjects suspected of having NF1, according to the NIH consensus criteria. Western blot analysis was carried out on protein extracts from patients' leukocytes to highlight the possible presence of altered neurofibromin as a result of mutations in NF1. Truncated neurofibromin was identified in 274/336 patients (81%), confirming the usefulness and reproducibility of the proposed diagnostic approach. Our methodology can be routinely applied in the diagnostic setting, thanks to its simplicity and reliability. Combined with molecular approaches, it may increase the accuracy and efficiency of NF1 genetic testing. We evaluated a novel diagnostic method to detect truncated forms of neurofibromin in patients fulfilling the clinical criteria for Neurofibromatosis 1. Western blot analysis identified truncated neurofibromin in 274/336 patients (81%). Our results indicate that the proposed technique is cheap and reliable, and could ideally be performed as a preliminary biochemical screening before molecular analysis of the NF1 gene.


Subject(s)
Genetic Predisposition to Disease/genetics , Mutation/genetics , Neurofibromatosis 1/diagnosis , Neurofibromatosis 1/metabolism , Neurofibromin 1/genetics , Neurofibromin 1/metabolism , Adolescent , Adult , Aged , Child , DNA Mutational Analysis , Female , Genes, Neurofibromatosis 1/physiology , Genetic Testing/methods , Humans , Male , Middle Aged , Reproducibility of Results , Young Adult
15.
Hum Mol Genet ; 22(18): 3654-66, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23686279

ABSTRACT

Focal segmental glomerulosclerosis (FSGS) is the consequence of a disease process that attacks the kidney's filtering system, causing serious scarring. More than half of FSGS patients develop chronic kidney failure within 10 years, ultimately requiring dialysis or renal transplantation. There are currently several genes known to cause the hereditary forms of FSGS (ACTN4, TRPC6, CD2AP, INF2, MYO1E and NPHS2). This study involves a large, unique, multigenerational Australian pedigree in which FSGS co-segregates with progressive heart block with apparent X-linked recessive inheritance. Through a classical combined approach of linkage and haplotype analysis, we identified a 21.19 cM interval implicated on the X chromosome. We then used a whole exome sequencing approach to identify two mutated genes, NXF5 and ALG13, which are located within this linkage interval. The two mutations NXF5-R113W and ALG13-T141L segregated perfectly with the disease phenotype in the pedigree and were not found in a large healthy control cohort. Analysis using bioinformatics tools predicted the R113W mutation in the NXF5 gene to be deleterious and cellular studies support a role in the stability and localization of the protein suggesting a causative role of this mutation in these co-morbid disorders. Further studies are now required to determine the functional consequence of these novel mutations to development of FSGS and heart block in this pedigree and to determine whether these mutations have implications for more common forms of these diseases in the general population.


Subject(s)
Genetic Diseases, X-Linked/genetics , Glomerulosclerosis, Focal Segmental/genetics , Heart Block/genetics , Nucleocytoplasmic Transport Proteins/genetics , RNA-Binding Proteins/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Australia , Child , Child, Preschool , Exome , Female , Genes, X-Linked , Genetic Linkage , HEK293 Cells , Humans , Male , Mice , Middle Aged , Mutation , N-Acetylglucosaminyltransferases/genetics , Organ Specificity , Pedigree , Sequence Analysis, DNA , Young Adult
16.
Diagnostics (Basel) ; 14(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38337856

ABSTRACT

BACKGROUND: Late diagnosis of sepsis is associated with adverse consequences and high mortality rate. The aim of this study was to evaluate the diagnostic value of hematologic research parameters, that reflect the cell morphology of blood cells, available on the BC 6800 plus automated analyzer (Mindray) for the early detection of sepsis. MATERIALS AND METHODS: A complete blood count (CBC) was performed by Mindray BC 6800 Plus Analyzer in 327 patients (223 with a confirmed diagnosis of sepsis following sepsis-3 criteria, 104 without sepsis), admitted at the Intensive Care Unit of the Novara's Hospital (Italy) and in 56 patients with localized infection. RESULTS: In univariate logistic regression, age, Hb, RDW, MO#, NMR, NeuX, NeuY, NeuZ, LymX, MonX, MonY, MonZ were associated with sepsis (p < 0.005). In multivariate analysis, only RDW, NeuX, NeuY, NeuZ, MonX and MonZ were found to be independent predictors of sepsis (p < 0.005). Morphological research parameters are confirmed to be predictors of sepsis even when analyzing the group with localized infection. CONCLUSIONS: In addition to already established biomarkers and basic CBC parameters, new morphological cell parameters can be a valuable aid in the early diagnosis of sepsis at no additional cost.

18.
Headache ; 53(8): 1245-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23772601

ABSTRACT

BACKGROUND: The excitatory neurotransmitter glutamate has been implicated in both the hyperexcitability required for cortical spreading depression as well as activation of the trigeminovascular system required for the allodynia associated with migraine. Polymorphisms in the glutamate receptor ionotropic amino-3-hydroxy-5-methyl-4-isoxazole-propionin acid 1 (GRIA1) and GRIA3 genes that code for 2 of 4 subunits of the glutamate receptor have been previously associated with migraine in an Italian population. In addition, the GRIA3 gene is coded within a previously identified migraine susceptibility locus at Xq24. This study investigated the previously associated polymorphisms in both genes in an Australian case-control population. METHODS: Variants in GRIA1 and GRIA3 were genotyped in 472 unrelated migraine cases and matched controls, and data were analyzed for association. RESULTS: Analysis showed no association between migraine and the GRIA1 gene. However, association was observed with the GRIA3 single nucleotide polymorphism (SNP) rs3761555 (P=.008). CONCLUSION: The results of this study confirmed the previous report of association at the rs3761555 SNP within the migraine with aura subgroup of migraineurs. However, the study identified association with the inverse allele suggesting that rs3761555 may not be the causative SNP but is more likely in linkage disequilibrium with another causal variant in both populations. This study supports the plethora of evidence suggesting that glutamate dysfunction may contribute to migraine susceptibility, warranting further investigation of the glutamatergic system and particularly of the GRIA3 gene.


Subject(s)
Genetic Association Studies/methods , Migraine Disorders/epidemiology , Migraine Disorders/genetics , Polymorphism, Single Nucleotide/genetics , Receptors, AMPA/genetics , Australia/epidemiology , Case-Control Studies , Cohort Studies , Female , Humans , Male , Migraine Disorders/diagnosis
19.
Mol Neurobiol ; 60(4): 2150-2173, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36609826

ABSTRACT

Parkinson's disease (PD) represents the most common neurodegenerative movement disorder. We recently identified 16 novel genes associated with PD. In this study, we focused the attention on the common and rare variants identified in the lysosomal K+ channel TMEM175. The study includes a detailed clinical and genetic analysis of 400 cases and 300 controls. Molecular studies were performed on patient-derived fibroblasts. The functional properties of the mutant channels were assessed by patch-clamp technique and co-immunoprecipitation. We have found that TMEM175 was highly expressed in dopaminergic neurons of the substantia nigra pars compacta and in microglia of the cerebral cortex of the human brain. Four common variants were associated with PD, including two novel variants rs2290402 (c.-10C > T) and rs80114247 (c.T1022C, p.M341T), located in the Kozak consensus sequence and TM3II domain, respectively. We also disclosed 13 novel highly penetrant detrimental mutations in the TMEM175 gene associated with PD. At least nine of these mutations (p.R35C, p. R183X, p.A270T, p.P308L, p.S348L, p. L405V, p.R414W, p.P427fs, p.R481W) may be sufficient to cause the disease, and the presence of mutations of other genes correlated with an earlier disease onset. In vitro functional analysis of the ion channel encoded by the mutated TMEM175 gene revealed a loss of the K+ conductance and a reduced channel affinity for Akt. Moreover, we observed an impaired autophagic/lysosomal proteolytic flux and an increase expression of unfolded protein response markers in patient-derived fibroblasts. These data suggest that mutations in TMEM175 gene may contribute to the pathophysiology of PD.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/metabolism , Neurodegenerative Diseases/metabolism , Ion Channels/metabolism , Lysosomes/metabolism , Dopaminergic Neurons/metabolism , Potassium Channels/metabolism
20.
Nephrol Dial Transplant ; 27(1): 210-8, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21652546

ABSTRACT

BACKGROUND: Experimental evidence indicate that melatonin regulates some renal tubular functions via specific melatonin receptors (MTNRs) located in the kidney of several avian and mammalian species, including humans. We hypothesized that single nucleotide polymorphisms (SNPs) in the melatonin receptor 1A gene (MTNR1A) might influence the risk of calcium nephrolithiasis. METHODS: We performed a systematic analysis of the MTNR1A gene in 246 recurrent calcium stone formers (136 men, 110 women; mean age 40.2 ± 12.0 years; body mass index 25.8 ± 4.5 kg/m2) and 269 healthy controls comparable for age and gender without a history of nephrolithiasis. RESULTS: Two SNPs in Intron 1 of MTNR1A were significantly associated with calcium nephrolithiasis: rs13140012 (P = 0.0004) and rs6553010 (P = 0.009). The haplotypes resulting from the two SNPs were also differently distributed between stone formers and controls, the haplotype A-T being more represented among stone formers (P = 0.00001) and the haplotype T-C being more common in healthy controls (P = 0.00001). Preliminary functional studies showed that the SNP rs13140012 could modify the binding sites for transcription factors. CONCLUSION: The results of this case-control study indicate a strong association between allelic variants of MTNR1A and recurrent calcium nephrolithiasis.


Subject(s)
Biomarkers/metabolism , Calcium/metabolism , Kidney Calculi/genetics , Nephrolithiasis/genetics , Polymorphism, Single Nucleotide/genetics , Receptor, Melatonin, MT1/genetics , Recurrence , Adult , Base Sequence , Case-Control Studies , DNA/genetics , DNA Mutational Analysis , Electrophoretic Mobility Shift Assay , Female , Humans , Kidney Calculi/pathology , Male , Middle Aged , Nephrolithiasis/pathology , Prognosis , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL