ABSTRACT
Neuroinflammation is a major hallmark of amyotrophic lateral sclerosis (ALS), which is currently untreatable. Several anti-inflammatory compounds have been evaluated in patients and in animal models of ALS, but have been proven disappointing in part because effective targets have not yet been identified. Cyclophilin A, also known as peptidylprolyl cis-/trans-isomerase A (PPIA), as a foldase is beneficial intracellularly, but extracellularly has detrimental functions. We found that extracellular PPIA is a mediator of neuroinflammation in ALS. It is a major inducer of matrix metalloproteinase 9 and is selectively toxic for motor neurons. High levels of PPIA were found in the CSF of SOD1G93A mice and rats and sporadic ALS patients, suggesting that our findings may be relevant for familial and sporadic cases. A specific inhibitor of extracellular PPIA, MM218, given at symptom onset, rescued motor neurons and extended survival in the SOD1G93A mouse model of familial ALS by 11 d. The treatment resulted in the polarization of glia toward a prohealing phenotype associated with reduced NF-κB activation, proinflammatory markers, endoplasmic reticulum stress, and insoluble phosphorylated TDP-43. Our results indicates that extracellular PPIA is a promising druggable target for ALS and support further studies to develop a therapy to arrest or slow the progression of the disease in patients.SIGNIFICANCE STATEMENT We provide evidence that extracellular cyclophilin A, also known as peptidylprolyl cis-/trans-isomerase A (PPIA), is a mediator of the neuroinflammatory reaction in amyotrophic lateral sclerosis (ALS) and is toxic for motor neurons. Supporting this, a specific extracellular PPIA inhibitor reduced neuroinflammation, rescued motor neurons, and extended survival in the SOD1G93A mouse model of familial ALS. Our findings suggest selective pharmacological inhibition of extracellular PPIA as a novel therapeutic strategy, not only for SOD1-linked ALS, but possibly also for sporadic ALS. This approach aims to address the neuroinflammatory reaction that is a major hallmark of ALS. However, given the complexity of the disease, a combination of therapeutic approaches may be necessary.
Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Cyclophilin A/metabolism , Disease Models, Animal , Extracellular Fluid/metabolism , Inflammation Mediators/metabolism , Adult , Aged , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/mortality , Animals , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Coculture Techniques , Cyclophilin A/antagonists & inhibitors , Drug Delivery Systems/methods , Enzyme Inhibitors/administration & dosage , Extracellular Fluid/drug effects , Female , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation Mediators/antagonists & inhibitors , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Neurons/drug effects , Neurons/metabolism , Survival Rate/trendsABSTRACT
Peroxynitrite production and tyrosine nitration are present in several pathological conditions, including neurodegeneration, stroke, aging, and cancer. Nitration of the pro-survival chaperone heat shock protein 90 (Hsp90) in position 33 and 56 induces motor neuron death through a toxic gain-of-function. Here we show that nitrated Hsp90 regulates mitochondrial metabolism independently of the induction of cell death. In PC12 cells, a small fraction of nitrated Hsp90 was located on the mitochondrial outer membrane and down-regulated mitochondrial membrane potential, oxygen consumption, and ATP production. Neither endogenous Hsp90 present in the homogenate nor unmodified and fully active recombinant Hsp90 was able to compete with the nitrated protein for the binding to mitochondria. Moreover, endogenous or recombinant Hsp90 did not prevent the decrease in mitochondrial activity but supported nitrated Hsp90 mitochondrial gain-of-function. Nitrotyrosine in position 33, but not in any of the other four tyrosine residues prone to nitration in Hsp90, was sufficient to down-regulate mitochondrial activity. Thus, in addition to induction of cell death, nitrated Hsp90 can also regulate mitochondrial metabolism, suggesting that depending on the cell type, distinct Hsp90 nitration states regulate different aspects of cellular metabolism. This regulation of mitochondrial homeostasis by nitrated Hsp90 could be of particular relevance in cancer cells.
Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Mitochondria/metabolism , Protein Processing, Post-Translational , Tyrosine/analogs & derivatives , Adenosine Triphosphate/biosynthesis , Animals , Energy Metabolism , PC12 Cells , Protein Transport , Rats , Tyrosine/metabolismABSTRACT
Over-expression of mutant copper, zinc superoxide dismutase (SOD) in mice induces ALS and has become the most widely used model of neurodegeneration. However, no pharmaceutical agent in 20 years has extended lifespan by more than a few weeks. The Copper-Chaperone-for-SOD (CCS) protein completes the maturation of SOD by inserting copper, but paradoxically human CCS causes mice co-expressing mutant SOD to die within two weeks of birth. Hypothesizing that co-expression of CCS created copper deficiency in spinal cord, we treated these pups with the PET-imaging agent CuATSM, which is known to deliver copper into the CNS within minutes. CuATSM prevented the early mortality of CCSxSOD mice, while markedly increasing Cu, Zn SOD protein in their ventral spinal cord. Remarkably, continued treatment with CuATSM extended the survival of these mice by an average of 18 months. When CuATSM treatment was stopped, these mice developed ALS-related symptoms and died within 3 months. Restoring CuATSM treatment could rescue these mice after they became symptomatic, providing a means to start and stop disease progression. All ALS patients also express human CCS, raising the hope that familial SOD ALS patients could respond to CuATSM treatment similarly to the CCSxSOD mice.
Subject(s)
Amyotrophic Lateral Sclerosis/enzymology , Copper/administration & dosage , Copper/metabolism , Molecular Chaperones/metabolism , Spinal Cord/metabolism , Superoxide Dismutase/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Animals , Disease Models, Animal , Electron Transport Complex IV/metabolism , Kaplan-Meier Estimate , Mice , Mice, Transgenic , Molecular Chaperones/genetics , Superoxide Dismutase/geneticsABSTRACT
Oxidative stress is a widely recognized cause of cell death associated with neurodegeneration, inflammation, and aging. Tyrosine nitration in these conditions has been reported extensively, but whether tyrosine nitration is a marker or plays a role in the cell-death processes was unknown. Here, we show that nitration of a single tyrosine residue on a small proportion of 90-kDa heat-shock protein (Hsp90), is sufficient to induce motor neuron death by the P2X7 receptor-dependent activation of the Fas pathway. Nitrotyrosine at position 33 or 56 stimulates a toxic gain of function that turns Hsp90 into a toxic protein. Using an antibody that recognizes the nitrated Hsp90, we found immunoreactivity in motor neurons of patients with amyotrophic lateral sclerosis, in an animal model of amyotrophic lateral sclerosis, and after experimental spinal cord injury. Our findings reveal that cell death can be triggered by nitration of a single protein and highlight nitrated Hsp90 as a potential target for the development of effective therapies for a large number of pathologies.
Subject(s)
Cell Death/physiology , HSP90 Heat-Shock Proteins/metabolism , Peroxynitrous Acid/metabolism , Protein Processing, Post-Translational/physiology , Amyotrophic Lateral Sclerosis/metabolism , Animals , Disease Models, Animal , Humans , Motor Neurons/metabolism , Motor Neurons/pathology , Rats , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Tyrosine/metabolism , fas Receptor/metabolismABSTRACT
Nitrotyrosine is used as a marker for the production of peroxynitrite and other reactive nitrogen species. For over 20 years the presence of nitrotyrosine was associated with cell death in multiple pathologies. Filling the gap between correlation and causality has proven to be a difficult task. Here, we discuss the evidence supporting tyrosine nitration as a specific posttranslational modification participating in the induction of cell death signaling pathways.
Subject(s)
Cell Death , Tyrosine/analogs & derivatives , Animals , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/metabolism , Humans , Inflammation/metabolism , Inflammation/pathology , Peroxynitrous Acid/chemistry , Peroxynitrous Acid/metabolism , Reactive Nitrogen Species/chemistry , Reactive Nitrogen Species/metabolism , Signal Transduction , Superoxide Dismutase/metabolism , Tyrosine/chemistry , Tyrosine/metabolismABSTRACT
A common problem in confocal microscopy is the decrease in intensity of excitation light and emission signal from fluorophores as they travel through 3D specimens, resulting in decreased signal detected as a function of depth. Here, we report a visualization program compatible with widely used fluorophores in cell biology to facilitate image interpretation of differential protein disposition in 3D specimens. Glioblastoma cell clusters were fluorescently labeled for mitochondrial complex I (COXI), P2X7 receptor (P2X7R), ß-Actin, Ki-67, and DAPI. Each cell cluster was imaged using a laser scanning confocal microscope. We observed up to â¼70% loss in fluorescence signal across the depth in Z-stacks. This progressive underrepresentation of fluorescence intensity as the focal plane deepens hinders an accurate representation of signal location within a 3D structure. To address these challenges, we developed ProDiVis: a program that adjusts apparent fluorescent signals by normalizing one fluorescent signal to a reference signal at each focal plane. ProDiVis serves as a free and accessible, unbiased visualization tool to use in conjunction with fluorescence microscopy images and imaging software.
ABSTRACT
Tumors develop in an oxidative environment characterized by peroxynitrite production and downstream protein tyrosine (Y) nitration. We showed that tyrosine nitration supports schwannoma cell proliferation and regulates cell metabolism in the inheritable tumor disorder NF2-related Schwannomatosis (NF2-SWN). Here, we identified the chaperone Heat shock protein 90 (Hsp90) as the first nitrated protein that acts as a metabolic switch to promote schwannoma cell proliferation. Doubling the endogenous levels of nitrated Hsp90 in schwannoma cells or supplementing nitrated Hsp90 into normal Schwann cells increased their proliferation. Metabolically, nitration on either Y33 or Y56 conferred Hsp90 distinct functions; nitration at Y33 (Hsp90NY33) down-regulated mitochondrial oxidative phosphorylation, while nitration at Y56 (Hsp90NY56) increased glycolysis by activating the purinergic receptor P2X7 in both schwannoma and normal Schwann cells. Hsp90NY33 and Hsp90NY56 showed differential subcellular and spatial distribution corresponding with their metabolic and proliferative functions in schwannoma three-dimensional cell culture models. Collectively, these results underscore the role of tyrosine nitration as a post-translational modification regulating critical cellular processes. Nitrated proteins, particularly nitrated Hsp90, emerge as a novel category of tumor-directed therapeutic targets.
Subject(s)
Cell Proliferation , HSP90 Heat-Shock Proteins , Neurilemmoma , Schwann Cells , HSP90 Heat-Shock Proteins/metabolism , Humans , Neurilemmoma/metabolism , Neurilemmoma/pathology , Schwann Cells/metabolism , Cell Line, Tumor , Animals , Tyrosine/metabolism , Protein Processing, Post-Translational , Oxidative PhosphorylationABSTRACT
Mutations in Cu,Zn superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis (FALS), a rapidly fatal motor neuron disease. Mutant SOD1 has pleiotropic toxic effects on motor neurons, among which mitochondrial dysfunction has been proposed as one of the contributing factors in motor neuron demise. Mitochondria are highly dynamic in neurons; they are constantly reshaped by fusion and move along neurites to localize at sites of high-energy utilization, such as synapses. The finding of abnormal mitochondria accumulation in neuromuscular junctions, where the SOD1-FALS degenerative process is though to initiate, suggests that impaired mitochondrial dynamics in motor neurons may be involved in pathogenesis. We addressed this hypothesis by live imaging microscopy of photo-switchable fluorescent mitoDendra in transgenic rat motor neurons expressing mutant or wild-type human SOD1. We demonstrate that mutant SOD1 motor neurons have impaired mitochondrial fusion in axons and cell bodies. Mitochondria also display selective impairment of retrograde axonal transport, with reduced frequency and velocity of movements. Fusion and transport defects are associated with smaller mitochondrial size, decreased mitochondrial density, and defective mitochondrial membrane potential. Furthermore, mislocalization of mitochondria at synapses among motor neurons, in vitro, correlates with abnormal synaptic number, structure, and function. Dynamics abnormalities are specific to mutant SOD1 motor neuron mitochondria, since they are absent in wild-type SOD1 motor neurons, they do not involve other organelles, and they are not found in cortical neurons. Together, these results suggest that impaired mitochondrial dynamics may contribute to the selective degeneration of motor neurons in SOD1-FALS.
Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Motor Neurons/metabolism , Superoxide Dismutase/deficiency , Synapses/metabolism , Amyotrophic Lateral Sclerosis/genetics , Animals , Disease Models, Animal , Energy Metabolism/genetics , Female , Humans , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Diseases/genetics , Motor Neurons/pathology , Pregnancy , Primary Cell Culture , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Superoxide Dismutase/genetics , Superoxide Dismutase-1 , Synapses/pathologyABSTRACT
Reduced brain metabolism is an invariant feature of Alzheimer Disease (AD) that is highly correlated to the decline in brain functions. Decreased activities of key tricarboxylic acid cycle (TCA) cycle enzymes may underlie this abnormality and are highly correlated to the clinical state of the patient. The activity of the α-ketoglutarate dehydrogenase complex (KGDHC), an arguably rate-limiting enzyme of the TCA cycle, declines with AD, but the mechanism of inactivation and whether it can be reversed remains unknown. KGDHC consists of multiple copies of three subunits. KGDHC is sensitive to oxidative stress, which is pervasive in AD brain. The present studies tested the mechanism for the peroxynitrite-induced inactivation and subsequent reactivation of purified and cellular KGDHC. Peroxynitrite inhibited purified KGDHC activity in a dose-dependent manner and reduced subunit immunoreactivity and increased nitrotyrosine immunoreactivity. Nano-LC-MS/MS showed that the inactivation was related to nitration of specific tyrosine residues in the three subunits. GSH diminished the nitrotyrosine immunoreactivity of peroxynitrite-treated KGDHC, restored the activity and the immunoreactivity for KGDHC. Nano-LC-MS/MS showed this was related to de-nitration of specific tyrosine residues, suggesting KGDHC may have a denitrase activity. Treatment of N2a cells with peroxynitrite for 5 min followed by recovery of cells for 24 h reduced KGDHC activity and increased nitrotyrosine immunoreactivity. Increasing cellular GSH in peroxynitrite-treated cells rescued KGDHC activity to the control level. The results suggest that restoring KGDHC activity is possible and may be a useful therapeutic approach in neurodegenerative diseases.
Subject(s)
Ketoglutarate Dehydrogenase Complex/metabolism , Mitochondria/enzymology , Mitochondrial Proteins/metabolism , Peroxynitrous Acid/pharmacology , Tyrosine/analogs & derivatives , Alzheimer Disease/enzymology , Alzheimer Disease/therapy , Brain/enzymology , Cell Line , Citric Acid Cycle/drug effects , Enzyme Activation/drug effects , Humans , Ketoglutarate Dehydrogenase Complex/chemistry , Mitochondrial Proteins/chemistry , Peroxynitrous Acid/chemistry , Peroxynitrous Acid/metabolism , Tyrosine/chemistry , Tyrosine/metabolism , Tyrosine/pharmacologyABSTRACT
The diffusion-limited reaction of nitric oxide (NO) and superoxide (O2-) produces peroxynitrite (ONOO-), a biological oxidant that has been implicated in a number of pathological conditions, including neurodegenerative disorders. We previously reported that incubation of PC12 cells with peroxynitrite triggers apoptosis by simultaneously inhibiting the PI3K/Akt survival pathway, and activating the p38 and JNK MAP kinase pathways. We also reported that peroxynitrite-treated Heat Shock Protein 90 (Hsp90) stimulates PC12 cell death. Here, we show that nitrated Hsp90 mediates peroxynitrite-induced apoptosis by regulating specific signaling pathways triggered by activation of the purine receptor P2X7 (P2X7R) and downstream activation of PTEN. Intracellular delivery of peroxynitrite-treated Hsp90 was sufficient to stimulate PC12 cell death. In contrast, intracellular delivery of peroxynitrite-treated Hsp90 in which the five tyrosine (Tyr) residues susceptible to nitration were replaced by nitration-resistant phenylalanine had no effect on PC12 cell survival. Further, only nitration of Hsp90 at Tyr 56 was necessary and sufficient to stimulate PC12 cell apoptosis, and incubation of PC12 cells with peroxynitrite resulted in Hsp90 nitration at Tyr 56. Inhibition of P2X7R or downstream inhibition of PTEN prevented PC12 cell death stimulated by both incubation with peroxynitrite and nitrated Hsp90 (Hsp90NY). Peroxynitrite, Hsp90NY, and P2X7R activation all increased p38 and JNK MAP kinases activity, while inhibiting the Akt survival pathway. These results suggest that, in undifferentiated PC12 cells, peroxynitrite triggers apoptosis via nitration of Hsp90 at Tyr 56, which in turn activates P2X7R and PTEN. These results contrast with observations in motor neurons where the nitration of either Tyr 33 or Tyr 56 in Hsp90 stimulates apoptosis, suggesting that the targets of peroxynitrite may be different in different cell types. However, uncovering the pathways through which peroxynitrite triggers cell death in neurodegenerative conditions will provide new potential targets for therapeutic treatment.
Subject(s)
Peroxynitrous Acid , Tyrosine , Animals , Cell Death , HSP90 Heat-Shock Proteins , PC12 Cells , PTEN Phosphohydrolase , Peroxynitrous Acid/metabolism , Phosphatidylinositol 3-Kinases , Rats , Receptors, Purinergic P2X7 , Tyrosine/metabolismABSTRACT
When replete with zinc and copper, amyotrophic lateral sclerosis (ALS)-associated mutant SOD proteins can protect motor neurons in culture from trophic factor deprivation as efficiently as wild-type SOD. However, the removal of zinc from either mutant or wild-type SOD results in apoptosis of motor neurons through a copper- and peroxynitrite-dependent mechanism. It has also been shown that motor neurons isolated from transgenic mice expressing mutant SODs survive well in culture but undergo apoptosis when exposed to nitric oxide via a Fas-dependent mechanism. We combined these two parallel approaches for understanding SOD toxicity in ALS and found that zinc-deficient SOD-induced motor neuron death required Fas activation, whereas the nitric oxide-dependent death of G93A SOD-expressing motor neurons required copper and involved peroxynitrite formation. Surprisingly, motor neuron death doubled when Cu,Zn-SOD protein was either delivered intracellularly to G93A SOD-expressing motor neurons or co-delivered with zinc-deficient SOD to nontransgenic motor neurons. These results could be rationalized by biophysical data showing that heterodimer formation of Cu,Zn-SOD with zinc-deficient SOD prevented the monomerization and subsequent aggregation of zinc-deficient SOD under thiol-reducing conditions. ALS mutant SOD was also stabilized by mutating cysteine 111 to serine, which greatly increased the toxicity of zinc-deficient SOD. Thus, stabilization of ALS mutant SOD by two different approaches augmented its toxicity to motor neurons. Taken together, these results are consistent with copper-containing zinc-deficient SOD being the elusive "partially unfolded intermediate" responsible for the toxic gain of function conferred by ALS mutant SOD.
Subject(s)
Mutation , Superoxide Dismutase/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Animals , Animals, Genetically Modified , Apoptosis , Chelating Agents/pharmacology , Copper/chemistry , Kinetics , Motor Neurons/metabolism , Neurons/metabolism , Nitric Oxide/chemistry , Peroxynitrous Acid/chemistry , Proteins/chemistry , RatsABSTRACT
During CNS injury and diseases, nitric oxide (NO) is released at a high flux rate leading to formation of peroxynitrite (ONOO(*)) and other reactive nitrogenous species, which nitrate tyrosines of proteins to form 3-nitrotyrosine (3NY), leading to cell death. Previously, we have found that motor neurons exposed to low levels of NO become resistant to subsequent cytotoxic NO challenge; an effect dubbed induced adaptive resistance (IAR). Here, we report IAR mitigates, not only cell death, but 3NY formation in response to cytotoxic NO. Addition of an NO scavenger before NO challenge duplicates IAR, implicating reactive nitrogenous species in cell death. Addition of uric acid (a peroxynitrite scavenger) before cytotoxic NO challenge, duplicates IAR, implicating peroxynitrite, with subsequent 3NY formation, in cell death, and abrogation of this pathway as a mechanism of IAR. IAR is dependent on the heme-metabolizing enzyme, heme oxygenase-1 (HO1), as indicated by the elimination of IAR by a specific HO1 inhibitor, and by the finding that neurons isolated from HO1 null mice have increased NO sensitivity with concomitant increased 3NY formation. This data indicate that IAR is an HO1-dependent mechanism that prevents peroxynitrite-mediated NO toxicity in motor neurons, thereby elucidating therapeutic targets for the mitigation of CNS disease and injury.
Subject(s)
Adaptation, Physiological/physiology , Central Nervous System/pathology , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/toxicity , Peroxynitrous Acid/metabolism , Adaptation, Physiological/drug effects , Animals , Cell Death/drug effects , Cell Death/physiology , Cells, Cultured , Central Nervous System/drug effects , Central Nervous System/metabolism , Central Nervous System Diseases/chemically induced , Central Nervous System Diseases/metabolism , Central Nervous System Diseases/pathology , Female , Mice , Mice, Inbred BALB C , Mice, Knockout , Motor Neurons/drug effects , Motor Neurons/metabolism , Motor Neurons/pathology , Nitric Oxide/metabolism , Pregnancy , Reactive Nitrogen Species/metabolismABSTRACT
Depending on its concentration, nitric oxide (NO) has beneficial or toxic effects. In pathological conditions, NO reacts with superoxide to form peroxynitrite, which nitrates proteins forming nitrotyrosine residues (3NY), leading to loss of protein function, perturbation of signal transduction, and cell death. 3NY immunoreactivity is present in many CNS diseases, particularly multiple sclerosis. Here, using the high flux NO donor, spermine-NONOate, we report that oligodendrocytes are resistant to NO, while motor neurons are NO sensitive. Motor neuron sensitivity correlates with the NO-dependent formation of 3NY, which is significantly more pronounced in motor neurons when compared with oligodendrocytes, suggesting peroxynitrite as the toxic molecule. The heme-metabolizing enzyme, heme-oxygenase-1 (HO1), is necessary for oligodendrocyte NO resistance, as demonstrated by loss of resistance after HO1 inhibition. Resistance is reinstated by peroxynitrite scavenging with uric acid further implicating peroxynitrite as responsible for NO sensitivity. Most importantly, differential sensitivity to NO is also present in cultures of primary oligodendrocytes and motor neurons. Finally, motor neurons cocultured with oligodendrocytes, or oligodendrocyte-conditioned media, become resistant to NO toxicity. Preliminary studies suggest oligodendrocytes release a soluble factor that protects motor neurons. Our findings challenge the current paradigm that oligodendrocytes are the exclusive target of multiple sclerosis pathology.
Subject(s)
Motor Neurons/metabolism , Multiple Sclerosis/metabolism , Oligodendroglia/metabolism , Reactive Nitrogen Species/metabolism , Animals , Cell Line , Cells, Cultured , Coculture Techniques , Female , Heme Oxygenase-1/metabolism , Humans , Mice , Motor Neurons/drug effects , Motor Neurons/pathology , Multiple Sclerosis/pathology , Nitric Oxide/metabolism , Nitric Oxide/toxicity , Nitric Oxide Donors/pharmacology , Oligodendroglia/drug effects , Oligodendroglia/pathology , Peroxynitrous Acid/metabolism , Pregnancy , Rats , Rats, Sprague-DawleyABSTRACT
gamma-Aminobutyric acid (GABA) regulates the proliferation and migration of olfactory bulb (OB) interneuron progenitors derived from the subventricular zone (SVZ), but the role of GABA in the differentiation of these progenitors has been largely unexplored. This study examines the role of GABA in the differentiation of OB dopaminergic interneurons using neonatal forebrain organotypic slice cultures prepared from transgenic mice expressing green fluorescent protein (GFP) under the control of the tyrosine hydroxylase (Th) gene promoter (ThGFP). KCl-mediated depolarization of the slices induced ThGFP expression. The addition of GABA to the depolarized slices further increased GFP fluorescence by inducing ThGFP expression in an additional set of periglomerular cells. These findings show that GABA promoted differentiation of SVZ-derived OB dopaminergic interneurons and suggest that GABA indirectly regulated Th expression and OB dopaminergic neuron differentiation through an acceleration of the maturation rate for the dopaminergic progenitors. Additional studies revealed that the effect of GABA on ThGFP expression required activation of L- and P/Q-type Ca2+ channels as well as GABA(A) and GABA(B) receptors. These voltage-gated Ca2+ channels and GABA receptors have previously been shown to be required for the coexpressed GABAergic phenotype in the OB interneurons. Together, these findings suggest that Th expression and the differentiation of OB dopaminergic interneurons are coupled to the coexpressed GABAergic phenotype and demonstrate a novel role for GABA in neurogenesis.
Subject(s)
Dopamine/metabolism , Gene Expression/drug effects , Interneurons/drug effects , Olfactory Bulb/cytology , gamma-Aminobutyric Acid/pharmacology , Agatoxins , Amino Acids/pharmacology , Animals , Animals, Newborn , Bicuculline/pharmacology , Calcium Channel Blockers/pharmacology , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/pharmacology , GABA Antagonists/pharmacology , Green Fluorescent Proteins/genetics , Mice , Mice, Transgenic , Phosphinic Acids/pharmacology , Potassium Chloride/pharmacology , Prosencephalon/cytology , Prosencephalon/metabolism , Spider Venoms/pharmacology , Tissue Culture Techniques , Tyrosine 3-Monooxygenase/genetics , Xanthenes/pharmacologyABSTRACT
Death pathways restricted to specific neuronal classes could potentially allow for precise control of developmental neuronal death and also underlie the selectivity of neuronal loss in neurodegenerative disease. We show that Fas-triggered death of normal embryonic motoneurons requires transcriptional upregulation of neuronal NOS and involves Daxx, ASK1, and p38 together with the classical FADD/caspase-8 cascade. No evidence for involvement of this pathway was found in cells other than motoneurons. Motoneurons from transgenic mice overexpressing ALS-linked SOD1 mutants (G37R, G85R, or G93A) displayed increased susceptibility to activation of this pathway: they were more sensitive to Fas- or NO-triggered cell death but not to trophic deprivation or excitotoxic stimulation. Thus, triggering of a motoneuron-restricted cell death pathway by neighboring cells might contribute to motoneuron loss in ALS.
Subject(s)
Adaptor Proteins, Signal Transducing , Amyotrophic Lateral Sclerosis/metabolism , Cell Death/genetics , Central Nervous System/metabolism , Intracellular Signaling Peptides and Proteins , Motor Neurons/metabolism , Mutation/genetics , Superoxide Dismutase/metabolism , fas Receptor/metabolism , Amyotrophic Lateral Sclerosis/genetics , Animals , Carrier Proteins/metabolism , Caspase 8 , Caspase 9 , Caspases/metabolism , Cells, Cultured , Co-Repressor Proteins , Fas-Associated Death Domain Protein , Female , Fetus , Genetic Linkage/genetics , MAP Kinase Kinase Kinase 5 , MAP Kinase Kinase Kinases/metabolism , Male , Mice , Mice, Transgenic , Mitogen-Activated Protein Kinases/metabolism , Molecular Chaperones , Nitric Oxide/metabolism , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism , Nuclear Proteins/metabolism , Peroxynitrous Acid/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase-1 , Superoxides/metabolism , Up-Regulation/genetics , fas Receptor/genetics , p38 Mitogen-Activated Protein KinasesABSTRACT
Vascular endothelial growth factor (VEGF) plays a neuroprotective role in mice harboring mutations of copper-zinc superoxide dismutase 1 (SOD1) in familial amyotrophic lateral sclerosis (ALS). Conversely, the loss of VEGF expression through genetic depletion can give rise to a phenotype resembling ALS independent of SOD1 mutations. Here, we observe a profound downregulation of VEGF mRNA expression in spinal cords of G93A SOD1 mice that occurred early in the course of the disease. Using an in vitro culture model of glial cells expressing mutant SOD1, we demonstrate destabilization and downregulation of VEGF RNA with concomitant loss of protein expression that correlates with level of transgene expression. Using a luciferase reporter assay, we show that this molecular effect is mediated through a portion of the VEGF 3'-untranslated region (UTR) that harbors a class II adenylate/uridylate-rich element. Other mutant forms of SOD1 produced a similar negative effect on luciferase RNA and protein expression. Mobility shift assay with a VEGF 3'-UTR probe reveals an aberrantly migrating complex that contains mutant SOD1. We further show that the RNA stabilizing protein, HuR (human antigen R), is translocated from nucleus to cytoplasm in mutant SOD1 cells in vitro and mouse motor neurons in vivo. In summary, our data suggest that mutant SOD1 gains a novel function, possibly by altering the ribonucleoprotein complex with the VEGF 3'-UTR. We postulate that the resultant dysregulation of VEGF posttranscriptional processing critically reduces the level of this neuroprotective growth factor and accelerates the neurodegenerative process in ALS.
Subject(s)
Amino Acid Substitution/genetics , Amyotrophic Lateral Sclerosis/enzymology , Down-Regulation/genetics , RNA, Messenger/antagonists & inhibitors , Superoxide Dismutase/genetics , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Mice , Mice, Transgenic , RNA, Messenger/biosynthesis , Superoxide Dismutase/physiology , Superoxide Dismutase-1 , Vascular Endothelial Growth Factor A/biosynthesisABSTRACT
When deprived of trophic factors, the majority of cultured motor neurons undergo nitric oxide-dependent apoptosis. However, for reasons that have remained unclear, 30-50% of the motor neurons survive for several days without trophic factors. Here we hypothesize that the resistance of this motor neuron subpopulation to trophic factor deprivation can be attributed to diminished nitric oxide production resulting from the activity of the arginine-degrading enzyme arginase. When incubated with nor-N(G)-hydroxy-nor-L-arginine (NOHA), the normally resistant trophic factor-deprived motor neurons showed a drop in survival rates, whereas trophic factor-treated neurons did not. NOHA-induced motor neuron death was inhibited by blocking nitric oxide synthesis and the scavenging of superoxide and peroxynitrite, suggesting that peroxynitrite mediates NOHA toxicity. When we transfected arginase 1 into motor neurons to see whether it alone could abrogate trophic factor deprivation-induced death, we found that its forced expression did indeed do so. The protection afforded by arginase 1 expression is reversed when cells are incubated with NOHA or with low concentrations of nitric oxide. These results reveal that arginase acts as a central regulator of trophic factor-deprived motor neuron survival by suppressing nitric oxide production and the consequent peroxynitrite toxicity. They also suggest that the resistance of motor neuron subpopulations to trophic factor deprivation may result from increased arginase activity.
Subject(s)
Apoptosis/physiology , Arginase/physiology , Growth Substances/deficiency , Motor Neurons/physiology , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Animals , Arginase/antagonists & inhibitors , Arginase/genetics , Arginine/analogs & derivatives , Arginine/pharmacology , Brain-Derived Neurotrophic Factor/pharmacology , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Enzyme Inhibitors/pharmacology , Motor Neurons/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Peroxynitrous Acid/antagonists & inhibitors , Peroxynitrous Acid/metabolism , Rats , TransfectionABSTRACT
Peroxynitrite (ONOO-) is a strong biological oxidant formed by the diffusion-limited reaction of nitric oxide (NO-) and superoxide anion (O2-). It has long been theorized that peroxynitrite generation could be the cause in a number of pathological conditions ranging from atherosclerosis to inflammatory, autoimmune, heart and neurodegenerative diseases. Its relatively long biological half-life and high reactivity allows peroxynitrite to oxidize a number of different targets in the cell. In physiologically relevant conditions peroxynitrite can directly react with thiols, or the radical products of peroxynitrite decomposition may indirectly oxidize other cellular components such as lipids, proteins and DNA. Downstream, oxidative modifications caused by peroxynitrite trigger cell death by a variety of mechanisms depending on the concentration of the oxidant. Peroxynitrite stimulates necrosis, apoptosis, autophagy, parthanatos and necroptosis. Here we review the mechanisms activated by peroxynitrite to cause neuronal death.
Subject(s)
Peroxynitrous Acid/adverse effects , Peroxynitrous Acid/metabolism , Animals , Apoptosis/drug effects , Cell Death , Humans , Necrosis/metabolism , Neurons/metabolism , Neurons/physiology , Nitrates , Nitric Oxide/metabolism , Oxidation-Reduction , Peroxynitrous Acid/pharmacology , SuperoxidesABSTRACT
The transduction of cellular signals occurs through the modification of target molecules. Most of these modifications are transitory, thus the signal transduction pathways can be tightly regulated. Reactive nitrogen species are a group of compounds with different properties and reactivity. Some reactive nitrogen species are highly reactive and their interaction with macromolecules can lead to permanent modifications, which suggested they were lacking the specificity needed to participate in cell signaling events. However, the perception of reactive nitrogen species as oxidizers of macromolecules leading to general oxidative damage has recently evolved. The concept of redox signaling is now well established for a number of reactive oxygen and nitrogen species. In this context, the post-translational modifications introduced by reactive nitrogen species can be very specific and are active participants in signal transduction pathways. This review addresses the role of these oxidative modifications in the regulation of cell signaling events.
Subject(s)
Protein Processing, Post-Translational/physiology , Reactive Nitrogen Species/metabolism , Signal Transduction/physiology , Animals , Humans , Oxidation-ReductionABSTRACT
Riluzole is the only FDA approved drug for the treatment of amyotrophic lateral sclerosis (ALS). However, the drug affords moderate protection to ALS patients, extending life for a few months by a mechanism that remains controversial. In the presence of riluzole, astrocytes increase the production of factors protective to motor neurons. The stimulation of trophic factor production by motor neuron associated cells may contribute to riluzole's protective effect in ALS. Here, we investigated the effects of media conditioned by astrocytes and Schwann cells acutely or chronically incubated with riluzole on trophic factor-deprived motor neuron survival. While acute riluzole incubation induced CT-1 secretion by astrocytes and Schwann cells, chronic treatment stimulated a significant decrease in trophic factor production compared to untreated cultures. Accordingly, conditioned media from astrocytes and Schwann cells acutely treated with riluzole protected motor neurons from trophic factor deprivation-induced cell death. Motor neuron protection was prevented by incubation with CT-1 neutralizing antibodies. In contrast, conditioned media from astrocytes and Schwann cells chronically treated with riluzole was not protective. Acute and chronic treatment of mice with riluzole showed opposite effects on trophic factor production in spinal cord, sciatic nerve and brain. There was an increase in the production of CT-1 and GDNF in the spinal cord and CT-1 in the sciatic nerve during the first days of treatment with riluzole, but the levels dropped significantly after chronic treatment with the drug. Similar results were observed in brain for CT-1 and BDNF while there was no change in GDNF levels after riluzole treatment. Our results reveal that riluzole regulates long-lasting processes involving protein synthesis, which may be relevant for riluzole therapeutic effects. Changing the regimen of riluzole administration to favor the acute effect of the drug on trophic factor production by discontinuous long-term treatment may improve the outcome of ALS patient therapy.