Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 943
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 40: 387-411, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35119910

ABSTRACT

Cell identity and function largely rely on the programming of transcriptomes during development and differentiation. Signature gene expression programs are orchestrated by regulatory circuits consisting of cis-acting promoters and enhancers, which respond to a plethora of cues via the action of transcription factors. In turn, transcription factors direct epigenetic modifications to revise chromatin landscapes, and drive contacts between distal promoter-enhancer combinations. In immune cells, regulatory circuits for effector genes are especially complex and flexible, utilizing distinct sets of transcription factors and enhancers, depending on the cues each cell type receives during an infection, after sensing cellular damage, or upon encountering a tumor. Here, we review major players in the coordination of gene regulatory programs within innate and adaptive immune cells, as well as integrative omics approaches that can be leveraged to decipher their underlying circuitry.


Subject(s)
Chromatin , Gene Regulatory Networks , Animals , Gene Expression Regulation , Humans , Promoter Regions, Genetic , Transcription Factors/genetics
2.
Cell ; 187(3): 585-595.e6, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38194968

ABSTRACT

Evolution of SARS-CoV-2 requires the reassessment of current vaccine measures. Here, we characterized BA.2.86 and XBB-derived variant FLip by investigating their neutralization alongside D614G, BA.1, BA.2, BA.4/5, XBB.1.5, and EG.5.1 by sera from 3-dose-vaccinated and bivalent-vaccinated healthcare workers, XBB.1.5-wave-infected first responders, and monoclonal antibody (mAb) S309. We assessed the biology of the variant spikes by measuring viral infectivity and membrane fusogenicity. BA.2.86 is less immune evasive compared to FLip and other XBB variants, consistent with antigenic distances. Importantly, distinct from XBB variants, mAb S309 was unable to neutralize BA.2.86, likely due to a D339H mutation based on modeling. BA.2.86 had relatively high fusogenicity and infectivity in CaLu-3 cells but low fusion and infectivity in 293T-ACE2 cells compared to some XBB variants, suggesting a potentially different conformational stability of BA.2.86 spike. Overall, our study underscores the importance of SARS-CoV-2 variant surveillance and the need for updated COVID-19 vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immune Evasion , SARS-CoV-2 , Humans , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/immunology , SARS-CoV-2/classification , SARS-CoV-2/physiology
3.
Nat Immunol ; 25(1): 77-87, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38049581

ABSTRACT

Intestinal intraepithelial lymphocytes (IELs) exhibit prompt innate-like responses to microenvironmental cues and require strict control of effector functions. Here we showed that Aiolos, an Ikaros zinc-finger family member encoded by Ikzf3, acted as a regulator of IEL activation. Ikzf3-/- CD8αα+ IELs had elevated expression of NK receptors, cytotoxic enzymes, cytokines and chemokines. Single-cell RNA sequencing of Ikzf3-/- and Ikzf3+/+ IELs showed an amplified effector machinery in Ikzf3-/- CD8αα+ IELs compared to Ikzf3+/+ counterparts. Ikzf3-/- CD8αα+ IELs had increased responsiveness to interleukin-15, which explained a substantial part, but not all, of the observed phenotypes. Aiolos binding sites were close to those for the transcription factors STAT5 and RUNX, which promote interleukin-15 signaling and cytolytic programs, and Ikzf3 deficiency partially increased chromatin accessibility and histone acetylation in these regions. Ikzf3 deficiency in mice enhanced susceptibility to colitis, underscoring the relevance of Aiolos in regulating the effector function in IELs.


Subject(s)
Intraepithelial Lymphocytes , Transcription Factors , Animals , Mice , CD8 Antigens/metabolism , Interleukin-15/metabolism , Intestinal Mucosa/metabolism , Intraepithelial Lymphocytes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Nat Immunol ; 23(4): 619-631, 2022 04.
Article in English | MEDLINE | ID: mdl-35332328

ABSTRACT

Innate lymphocytes encompass a diverse array of phenotypic identities with specialized functions. DNA methylation and hydroxymethylation are essential for epigenetic fidelity and fate commitment. The landscapes of these modifications are unknown in innate lymphocytes. Here, we characterized the whole-genome distribution of methyl-CpG and 5-hydroxymethylcytosine (5hmC) in mouse innate lymphoid cell 3 (ILC3), ILC2 and natural killer (NK) cells. We identified differentially methylated regions (DMRs) and differentially hydroxymethylated regions (DHMRs) between ILC and NK cell subsets and correlated them with transcriptional signatures. We associated lineage-determining transcription factors (LDTFs) with demethylation and demonstrated unique patterns of DNA methylation/hydroxymethylation in relationship to open chromatin regions (OCRs), histone modifications and TF-binding sites. We further identified an association between hydroxymethylation and NK cell superenhancers (SEs). Using mice lacking the DNA hydroxymethylase TET2, we showed the requirement for TET2 in optimal production of hallmark cytokines by ILC3s and interleukin-17A (IL-17A) by inflammatory ILC2s. These findings provide a powerful resource for studying innate lymphocyte epigenetic regulation and decode the regulatory logic governing their identity.


Subject(s)
DNA Methylation , Immunity, Innate , Animals , Chromatin/genetics , Epigenesis, Genetic , Immunity, Innate/genetics , Killer Cells, Natural , Lymphocytes , Mice
5.
Cell ; 176(1-2): 348-360.e12, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30595449

ABSTRACT

Natural killer (NK) cells develop from common progenitors but diverge into distinct subsets, which differ in cytokine production, cytotoxicity, homing, and memory traits. Given their promise in adoptive cell therapies for cancer, a deeper understanding of regulatory modules controlling clinically beneficial NK phenotypes is of high priority. We report integrated "-omics" analysis of human NK subsets, which revealed super-enhancers associated with gene cohorts that may coordinate NK functions and localization. A transcription factor-based regulatory scheme also emerged, which is evolutionarily conserved and shared by innate and adaptive lymphocytes. For both NK and T lineages, a TCF1-LEF1-MYC axis dominated the regulatory landscape of long-lived, proliferative subsets that traffic to lymph nodes. In contrast, effector populations circulating between blood and peripheral tissues shared a PRDM1-dominant landscape. This resource defines transcriptional modules, regulated by feedback loops, which may be leveraged to enhance phenotypes for NK cell-based therapies.


Subject(s)
Killer Cells, Natural/classification , Killer Cells, Natural/immunology , Killer Cells, Natural/physiology , Cytokines/immunology , Cytokines/metabolism , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Humans , Phenotype
7.
Nat Immunol ; 20(8): 980-991, 2019 08.
Article in English | MEDLINE | ID: mdl-31209406

ABSTRACT

Innate lymphoid cells (ILCs) are tissue-resident lymphocytes categorized on the basis of their core regulatory programs and the expression of signature cytokines. Human ILC3s that produce the cytokine interleukin-22 convert into ILC1-like cells that produce interferon-γ in vitro, but whether this conversion occurs in vivo remains unclear. In the present study we found that ILC3s and ILC1s in human tonsils represented the ends of a spectrum that included additional discrete subsets. RNA velocity analysis identified an intermediate ILC3-ILC1 cluster, which had strong directionality toward ILC1s. In humanized mice, the acquisition of ILC1 features by ILC3s showed tissue dependency. Chromatin studies indicated that the transcription factors Aiolos and T-bet cooperated to repress regulatory elements active in ILC3s. A transitional ILC3-ILC1 population was also detected in the human intestine. We conclude that ILC3s undergo conversion into ILC1-like cells in human tissues in vivo, and that tissue factors and Aiolos were required for this process.


Subject(s)
Immunity, Innate/immunology , Interferon-gamma/metabolism , Interleukins/metabolism , Intestinal Mucosa/immunology , Lymphocytes/immunology , Palatine Tonsil/immunology , Animals , Cell Differentiation/immunology , Cells, Cultured , Child , Child, Preschool , Humans , Ikaros Transcription Factor/metabolism , Intestinal Mucosa/cytology , Lymphocytes/classification , Lymphocytes/cytology , Mice , T-Box Domain Proteins/metabolism , Interleukin-22
8.
Cell ; 165(5): 1134-1146, 2016 May 19.
Article in English | MEDLINE | ID: mdl-27156452

ABSTRACT

Innate lymphoid cells (ILCs) serve as sentinels in mucosal tissues, sensing release of soluble inflammatory mediators, rapidly communicating danger via cytokine secretion, and functioning as guardians of tissue homeostasis. Although ILCs have been extensively studied in model organisms, little is known about these "first responders" in humans, especially their lineage and functional kinships to cytokine-secreting T helper (Th) cell counterparts. Here, we report gene regulatory circuitries for four human ILC-Th counterparts derived from mucosal environments, revealing that each ILC subset diverges as a distinct lineage from Th and circulating natural killer cells but shares circuitry devoted to functional polarization with their Th counterparts. Super-enhancers demarcate cohorts of cell-identity genes in each lineage, uncovering new modes of regulation for signature cytokines, new molecules that likely impart important functions to ILCs, and potential mechanisms for autoimmune disease SNP associations within ILC-Th subsets.


Subject(s)
Lymphocytes/cytology , Lymphocytes/immunology , Adaptive Immunity , Animals , Cytokines/immunology , Cytokines/metabolism , Enhancer Elements, Genetic , Humans , Immunity, Innate , Immunity, Mucosal , Killer Cells, Natural , Lymphocytes/metabolism , Mice , Palatine Tonsil/cytology , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Transcription Factors/metabolism , Transcriptome
9.
Cell ; 165(7): 1708-1720, 2016 Jun 16.
Article in English | MEDLINE | ID: mdl-27264604

ABSTRACT

In the mammalian intestine, crypts of Leiberkühn house intestinal epithelial stem/progenitor cells at their base. The mammalian intestine also harbors a diverse array of microbial metabolite compounds that potentially modulate stem/progenitor cell activity. Unbiased screening identified butyrate, a prominent bacterial metabolite, as a potent inhibitor of intestinal stem/progenitor proliferation at physiologic concentrations. During homeostasis, differentiated colonocytes metabolized butyrate likely preventing it from reaching proliferating epithelial stem/progenitor cells within the crypt. Exposure of stem/progenitor cells in vivo to butyrate through either mucosal injury or application to a naturally crypt-less host organism led to inhibition of proliferation and delayed wound repair. The mechanism of butyrate action depended on the transcription factor Foxo3. Our findings indicate that mammalian crypt architecture protects stem/progenitor cell proliferation in part through a metabolic barrier formed by differentiated colonocytes that consume butyrate and stimulate future studies on the interplay of host anatomy and microbiome metabolism.


Subject(s)
Bacteria/metabolism , Butyrates/metabolism , Colon/cytology , Colon/microbiology , Gastrointestinal Microbiome , Stem Cells/metabolism , Acyl-CoA Dehydrogenase/deficiency , Acyl-CoA Dehydrogenase/genetics , Animals , Cell Proliferation , Intestine, Small/cytology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Oxidation-Reduction , Pathogen-Associated Molecular Pattern Molecules/metabolism , Stem Cells/cytology , Zebrafish
10.
Mol Cell ; 73(1): 48-60.e5, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30449725

ABSTRACT

The genome is organized into topologically associated domains (TADs) that enclose smaller subTADs. Here, we identify and characterize an enhancer that is located in the middle of the V gene region of the immunoglobulin kappa light chain (Igκ) locus that becomes active preceding the stage at which this locus undergoes V(D)J recombination. This enhancer is a hub of long-range chromatin interactions connecting subTADs in the V gene region with the recombination center at the J genes. Deletion of this element results in a highly altered long-range chromatin interaction pattern across the locus and, importantly, affects individual V gene utilization locus-wide. These results indicate the existence of an enhancer-dependent framework in the Igκ locus and further suggest that the composition of the diverse antibody repertoire is regulated in a subTAD-specific manner. This enhancer thus plays a structural role in orchestrating the proper folding of the Igκ locus in preparation for V(D)J recombination.


Subject(s)
Antibody Diversity , Cell Nucleus/immunology , Enhancer Elements, Genetic , Gene Rearrangement, B-Lymphocyte , Immunoglobulin kappa-Chains/immunology , Precursor Cells, B-Lymphoid/immunology , Receptors, Antigen, B-Cell/immunology , Animals , Cell Line, Tumor , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cell Nucleus Shape , Chromatin Assembly and Disassembly , Genotype , HEK293 Cells , Humans , Immunoglobulin kappa-Chains/chemistry , Immunoglobulin kappa-Chains/genetics , Immunoglobulin kappa-Chains/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Precursor Cells, B-Lymphoid/metabolism , Protein Conformation , Receptors, Antigen, B-Cell/chemistry , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Structure-Activity Relationship
11.
Cell ; 147(2): 332-43, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-21982154

ABSTRACT

The immunoglobulin heavy-chain (IgH) gene locus undergoes radial repositioning within the nucleus and locus contraction in preparation for gene recombination. We demonstrate that IgH locus conformation involves two levels of chromosomal compaction. At the first level, the locus folds into several multilooped domains. One such domain at the 3' end of the locus requires an enhancer, Eµ; two other domains at the 5' end are Eµ independent. At the second level, these domains are brought into spatial proximity by Eµ-dependent interactions with specific sites within the V(H) region. Eµ is also required for radial repositioning of IgH alleles, indicating its essential role in large-scale chromosomal movements in developing lymphocytes. Our observations provide a comprehensive view of the conformation of IgH alleles in pro-B cells and the mechanisms by which it is established.


Subject(s)
B-Lymphocytes/metabolism , Cell Nucleus/genetics , Chromatin/chemistry , Genes, Immunoglobulin Heavy Chain , Immunoglobulin Heavy Chains/genetics , Animals , CCCTC-Binding Factor , Enhancer Elements, Genetic , Immunoglobulin Variable Region , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Repressor Proteins/metabolism , V(D)J Recombination , YY1 Transcription Factor/metabolism
13.
Proc Natl Acad Sci U S A ; 119(27): e2200047119, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35759656

ABSTRACT

Adequate pain management is one of the biggest challenges of the modern healthcare system. Physician perception of patient subjective pain, which is crucial to pain management, is susceptible to a host of potential biases. Here we explore the timing of physicians' work as a previously unrecognized source of systematic bias in pain management. We hypothesized that during night shifts, sleep deprivation, fatigue, and stress would reduce physicians' empathy for others' pain, leading to underprescription of analgesics for patient pain relief. In study 1, 67 resident physicians, either following a night shift or not, performed empathy for pain assessment tasks and simulated patient scenarios in laboratory conditions. As predicted, following a night shift, physicians showed reduced empathy for pain. In study 2, we explored this phenomenon in medical decisions in the field. We analyzed three emergency department datasets from Israel and the United States that included discharge notes of patients arriving with pain complaints during 2013 to 2020 (n = 13,482). Across all datasets, physicians were less likely to prescribe an analgesic during night shifts (compared to daytime shifts) and prescribed fewer analgesics than generally recommended by the World Health Organization. This effect remained significant after adjusting for patient, physician, type of complaint, and emergency department characteristics. Underprescription for pain during night shifts was particularly prominent for opioids. We conclude that night shift work is an important and previously unrecognized source of bias in pain management, likely stemming from impaired perception of pain. We consider the implications for hospitals and other organizations employing night shifts.


Subject(s)
Analgesics , Drug Prescriptions , Empathy , Physician-Patient Relations , Physicians , Shift Work Schedule , Analgesics/therapeutic use , Datasets as Topic , Humans , Israel , Pain/drug therapy , Physicians/psychology , Shift Work Schedule/psychology , Sleep Deprivation , United States
14.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34937699

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible coronavirus responsible for the global COVID-19 pandemic. Herein, we provide evidence that SARS-CoV-2 spreads through cell-cell contact in cultures, mediated by the spike glycoprotein. SARS-CoV-2 spike is more efficient in facilitating cell-to-cell transmission than is SARS-CoV spike, which reflects, in part, their differential cell-cell fusion activity. Interestingly, treatment of cocultured cells with endosomal entry inhibitors impairs cell-to-cell transmission, implicating endosomal membrane fusion as an underlying mechanism. Compared with cell-free infection, cell-to-cell transmission of SARS-CoV-2 is refractory to inhibition by neutralizing antibody or convalescent sera of COVID-19 patients. While angiotensin-converting enzyme 2 enhances cell-to-cell transmission, we find that it is not absolutely required. Notably, despite differences in cell-free infectivity, the authentic variants of concern (VOCs) B.1.1.7 (alpha) and B.1.351 (beta) have similar cell-to-cell transmission capability. Moreover, B.1.351 is more resistant to neutralization by vaccinee sera in cell-free infection, whereas B.1.1.7 is more resistant to inhibition by vaccinee sera in cell-to-cell transmission. Overall, our study reveals critical features of SARS-CoV-2 spike-mediated cell-to-cell transmission, with important implications for a better understanding of SARS-CoV-2 spread and pathogenesis.


Subject(s)
COVID-19/immunology , COVID-19/transmission , SARS-CoV-2/immunology , Virus Internalization , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral , COVID-19/therapy , Cell Fusion , Chlorocebus aethiops , HEK293 Cells , Humans , Immunization, Passive , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , COVID-19 Serotherapy
15.
Proc Natl Acad Sci U S A ; 119(32): e2119944119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35914157

ABSTRACT

Forensic handwriting examination involves the comparison of writing samples by forensic document examiners (FDEs) to determine whether or not they were written by the same person. Here we report the results of a large-scale study conducted to assess the accuracy and reliability of handwriting comparison conclusions. Eighty-six practicing FDEs each conducted up to 100 handwriting comparisons, resulting in 7,196 conclusions on 180 distinct comparison sets, using a five-level conclusion scale. Erroneous "written by" conclusions (false positives) were reached in 3.1% of the nonmated comparisons, while 1.1% of the mated comparisons yielded erroneous "not written by" conclusions (false negatives). False positive rates were markedly higher for nonmated samples written by twins (8.7%) compared to nontwins (2.5%). Notable associations between training and performance were observed: FDEs with less than 2 y of formal training generally had higher error rates, but they also had higher true positive and true negative rates because they tended to provide more definitive conclusions; FDEs with at least 2 y of formal training were less likely to make definitive conclusions, but those definitive conclusions they made were more likely to be correct (higher positive predictive and negative predictive values). We did not observe any association between writing style (cursive vs. printing) and rates of errors or incorrect conclusions. This report also provides details on the repeatability and reproducibility of conclusions, and reports how conclusions are affected by the quantity of writing and the similarity of content.


Subject(s)
Forensic Sciences , Handwriting , Forensic Sciences/methods , Humans , Professional Competence , Reproducibility of Results , Twins
16.
J Pediatr ; 273: 114132, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823628

ABSTRACT

OBJECTIVE: To define percentile charts for arterial oxygen saturation (SpO2), heart rate (HR), and cerebral oxygen saturation (crSO2) during the first 15 minutes after birth in neonates born very or extremely preterm and with favorable outcome. STUDY DESIGN: We conducted a secondary-outcome analysis of neonates born preterm included in the Cerebral regional tissue Oxygen Saturation to Guide Oxygen Delivery in preterm neonates during immediate transition after birth III (COSGOD III) trial with visible cerebral oximetry measurements and with favorable outcome, defined as survival without cerebral injuries until term age. We excluded infants with inflammatory morbidities within the first week after birth. SpO2 was obtained by pulse oximetry, and electrocardiogram or pulse oximetry were used for measurement of HR. crSO2 was assessed with near-infrared spectroscopy. Measurements were performed during the first 15 minutes after birth. Percentile charts (10th to 90th centile) were defined for each minute. RESULTS: A total of 207 neonates born preterm with a gestational age of 29.7 (23.9-31.9) weeks and a birth weight of 1200 (378-2320) g were eligible for analyses. The 10th percentile of SpO2 at minute 2, 5, 10, and 15 was 32%, 52%, 83%, and 85%, respectively. The 10th percentile of HR at minute 2, 5, 10, and 15 was 70, 109, 126, and 134 beats/min, respectively. The 10th percentile of crSO2 at minute 2, 5, 20, and 15 was 15%, 27%, 59%, and 63%, respectively. CONCLUSIONS: This study provides new centile charts for SpO2, HR, and crSO2 for neonates born extremely or very preterm with favorable outcome. Implementing these centiles in guiding interventions during the stabilization process after birth might help to more accurately target oxygenation during postnatal transition period.

17.
Immunity ; 42(1): 186-98, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25607463

ABSTRACT

Most B-cell lymphomas arise in the germinal center (GC), where humoral immune responses evolve from potentially oncogenic cycles of mutation, proliferation, and clonal selection. Although lymphoma gene expression diverges significantly from GC B cells, underlying mechanisms that alter the activities of corresponding regulatory elements (REs) remain elusive. Here we define the complete pathogenic circuitry of human follicular lymphoma (FL), which activates or decommissions REs from normal GC B cells and commandeers enhancers from other lineages. Moreover, independent sets of transcription factors, whose expression was deregulated in FL, targeted commandeered versus decommissioned REs. Our approach revealed two distinct subtypes of low-grade FL, whose pathogenic circuitries resembled GC B or activated B cells. FL-altered enhancers also were enriched for sequence variants, including somatic mutations, which disrupt transcription-factor binding and expression of circuit-linked genes. Thus, the pathogenic regulatory circuitry of FL reveals distinct genetic and epigenetic etiologies for GC B-cell transformation.


Subject(s)
B-Lymphocytes/physiology , Gene Regulatory Networks , Germinal Center/pathology , Lymphoma, B-Cell/genetics , Regulatory Elements, Transcriptional/immunology , Adult , Aged , Cell Transformation, Neoplastic , Epigenesis, Genetic , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lymphocyte Activation/genetics , Male , Middle Aged , Mutation/genetics , Regulatory Elements, Transcriptional/genetics , Transcription Factors/metabolism
18.
Pediatr Res ; 95(1): 75-83, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37752246

ABSTRACT

BACKGROUND: Many drugs are used off-label or unlicensed in neonates. This does not mean they are used without evidence or knowledge. We aimed to apply and evaluate the Grading and Assessment of Pharmacokinetic-Pharmacodynamic Studies (GAPPS) scoring system for the level of evidence of two commonly used anti-epileptic drugs. METHODS: Midazolam and phenobarbital as anti-epileptics were evaluated with a systematic literature search on neonatal pharmacokinetic (PK) and/or pharmacodynamic [PD, (amplitude-integrated) electroencephalography effect] studies. With the GAPPS system, two evaluators graded the current level of evidence. Inter-rater agreement was assessed for dosing evidence score (DES), quality of evidence (QoE), and strength of recommendation (REC). RESULTS: Seventy-two studies were included. DES scores 4 and 9 were most frequently used for PK, and scores 0 and 1 for PD. Inter-rater agreements on DES, QoE, and REC ranged from moderate to very good. A final REC was provided for all PK studies, but only for 25% (midazolam) and 33% (phenobarbital) of PD studies. CONCLUSIONS: There is a reasonable level of evidence concerning midazolam and phenobarbital PK in neonates, although using a predefined target without integrated PK/PD evaluation. Further research is needed on midazolam use in term neonates with therapeutic hypothermia, and phenobarbital treatment in preterms. IMPACT: There is a reasonable level of evidence concerning pharmacotherapy of midazolam and phenobarbital in neonates. Most evidence is however based on PK studies, using a predefined target level or concentration range without integrated, combined PK/PD evaluation. Using the GAPPS system, final strength of recommendation could be provided for all PK studies, but only for 25% (midazolam) to 33% (phenobarbital) of PD studies. Due to the limited PK observations of midazolam in term neonates with therapeutic hypothermia, and of phenobarbital in preterm neonates these subgroups can be identified for further research.


Subject(s)
Hypothermia, Induced , Midazolam , Infant, Newborn , Humans , Midazolam/pharmacokinetics , Midazolam/therapeutic use , Phenobarbital/therapeutic use , Anticonvulsants/therapeutic use , Electroencephalography
19.
Chem Rev ; 122(5): 4927-4945, 2022 03 09.
Article in English | MEDLINE | ID: mdl-33596647

ABSTRACT

This Review presents and discusses the current state of the art in "exchangeable liquid crystalline elastomers", that is, LCE materials utilizing dynamically cross-linked networks capable of reprocessing, reprogramming, and recycling. The focus here is on the chemistry and the specific reaction mechanisms that enable the dynamic bond exchange, of which there is a variety. We compare and contrast these different chemical mechanisms and the key properties of their resulting elastomers. In the conclusion, we discuss the most promising applications that are enabled by dynamic cross-linking and present a summary table: a library of currently available materials and their main characteristics.


Subject(s)
Elastomers , Liquid Crystals , Elastomers/chemistry , Liquid Crystals/chemistry
20.
Acta Paediatr ; 2024 05 27.
Article in English | MEDLINE | ID: mdl-38798138

ABSTRACT

AIM: Progressive respiratory deterioration in infants at high risk of bronchopulmonary dysplasia (BPD) is associated with patent ductus arteriosus (PDA) exposure. This study aimed to design an early predictive model for BPD or death in preterm infants using early echocardiographic markers and clinical data. METHODS: Infants born with gestational age (GA) ≤ 29 weeks and/or birth weight (BW) < 1500 g at Cork University Maternity Hospital, Ireland were retrospectively evaluated. Those with echocardiography performed between 36 h and 7 days of life were eligible for inclusion. Exclusion criteria were pulmonary hypertension and major congenital anomalies. The primary outcome was a composite of BPD and death before discharge. RESULTS: The study included 99 infants. A predictive model for the primary outcome was developed, which included three variables (BW, Respiratory Severity Score and flow pattern across the PDA), and yielding an area under the curve of 0.98 (95% CI 0.96-1.00, p < 0.001). Higher scores were predictive of the primary outcome. A cut-off of -1.0 had positive and negative predictive values of 89% and 98%, and sensitivity and specificity of 98% and 88%, respectively. CONCLUSION: Our prediction model is an accessible bedside tool that predicts BPD or death in premature infants.

SELECTION OF CITATIONS
SEARCH DETAIL