Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Am Nat ; 195(1): 82-94, 2020 01.
Article in English | MEDLINE | ID: mdl-31868543

ABSTRACT

Stable cooperation requires plasticity whereby individuals are able to express competitive or cooperative behaviors depending on social context. To date, however, the physiological mechanisms that underlie behavioral variation in cooperative systems are poorly understood. We studied hormone-mediated behavior in the wire-tailed manakin (Pipra filicauda), a gregarious songbird whose cooperative partnerships and competition for status are both crucial for fitness. We used automated telemetry to monitor >36,000 cooperative interactions among male manakins over three field seasons, and we examined how circulating testosterone affects cooperation using >500 hormone samples. Observational data show that in nonterritorial floater males, high testosterone is associated with increased cooperative behaviors and subsequent ascension to territorial status. In territory-holding males, however, both observational and experimental evidence demonstrate that high testosterone antagonizes cooperation. Moreover, circulating testosterone explains significant variation (2%-8%) in social behavior within each status class. Collectively, our findings show that the hormonal control of cooperation depends on a male's social status. We propose that the status-dependent reorganization of hormone-regulatory pathways can facilitate stable cooperative partnerships and thus provide direct fitness benefits for males.


Subject(s)
Cooperative Behavior , Passeriformes/physiology , Social Behavior , Territoriality , Testosterone/blood , Animals , Male , Seasons , Social Environment
2.
Ecology ; 99(8): 1825-1835, 2018 08.
Article in English | MEDLINE | ID: mdl-29802772

ABSTRACT

Transient species occur infrequently in a community over time and do not maintain viable local populations. Because transient species interact differently than non-transients with their biotic and abiotic environment, it is important to characterize the prevalence of these species and how they impact our understanding of ecological systems. We quantified the prevalence and impact of transient species in communities using data on over 19,000 community time series spanning an array of ecosystems, taxonomic groups, and spatial scales. We found that transient species are a general feature of communities regardless of taxa or ecosystem. The proportion of these species decreases with increasing spatial scale leading to a need to control for scale in comparative work. Removing transient species from analyses influences the form of a suite of commonly studied ecological patterns including species-abundance distributions, species-energy relationships, species-area relationships, and temporal turnover. Careful consideration should be given to whether transient species are included in analyses depending on the theoretical and practical relevance of these species for the question being studied.


Subject(s)
Biota , Ecosystem , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL