Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters

Publication year range
1.
Magn Reson Med ; 86(3): 1194-1211, 2021 09.
Article in English | MEDLINE | ID: mdl-33847012

ABSTRACT

PURPOSE: A standard MRI system phantom has been designed and fabricated to assess scanner performance, stability, comparability and assess the accuracy of quantitative relaxation time imaging. The phantom is unique in having traceability to the International System of Units, a high level of precision, and monitoring by a national metrology institute. Here, we describe the phantom design, construction, imaging protocols, and measurement of geometric distortion, resolution, slice profile, signal-to-noise ratio (SNR), proton-spin relaxation times, image uniformity and proton density. METHODS: The system phantom, designed by the International Society of Magnetic Resonance in Medicine ad hoc committee on Standards for Quantitative MR, is a 200 mm spherical structure that contains a 57-element fiducial array; two relaxation time arrays; a proton density/SNR array; resolution and slice-profile insets. Standard imaging protocols are presented, which provide rapid assessment of geometric distortion, image uniformity, T1 and T2 mapping, image resolution, slice profile, and SNR. RESULTS: Fiducial array analysis gives assessment of intrinsic geometric distortions, which can vary considerably between scanners and correction techniques. This analysis also measures scanner/coil image uniformity, spatial calibration accuracy, and local volume distortion. An advanced resolution analysis gives both scanner and protocol contributions. SNR analysis gives both temporal and spatial contributions. CONCLUSIONS: A standard system phantom is useful for characterization of scanner performance, monitoring a scanner over time, and to compare different scanners. This type of calibration structure is useful for quality assurance, benchmarking quantitative MRI protocols, and to transition MRI from a qualitative imaging technique to a precise metrology with documented accuracy and uncertainty.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Phantoms, Imaging , Signal-To-Noise Ratio
2.
J Labelled Comp Radiopharm ; 64(4): 159-167, 2021 04.
Article in English | MEDLINE | ID: mdl-33226657

ABSTRACT

The cathepsin K (CatK) enzyme is abundantly expressed in osteoclasts, and CatK inhibitors have been developed for the treatment of osteoporosis. In our effort to support discovery and clinical evaluations of a CatK inhibitor, we sought to discover a radioligand to determine target engagement of the enzyme by therapeutic candidates using positron emission tomography (PET). L-235, a potent and selective CatK inhibitor, was labeled with carbon-11. PET imaging studies recording baseline distribution of [11 C]L-235, and chase and blocking studies using the selective CatK inhibitor MK-0674 were performed in juvenile and adult nonhuman primates (NHP) and ovariectomized rabbits. Retention of the PET tracer in regions expected to be osteoclast-rich compared with osteoclast-poor regions was examined. Increased retention of the radioligand was observed in osteoclast-rich regions of juvenile rabbits and NHP but not in the adult monkey or adult ovariectomized rabbit. Target engagement of CatK was observed in blocking studies with MK-0674, and the radioligand retention was shown to be sensitive to the level of MK-0674 exposure. [11 C]L-235 can assess target engagement of CatK in bone only in juvenile animals. [11 C]L-235 may be a useful tool for guiding the discovery of CatK inhibitors.


Subject(s)
Cathepsin K/antagonists & inhibitors , Osteoporosis/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Animals , Bone and Bones/diagnostic imaging , Carbon Radioisotopes/chemistry , Cysteine Proteinase Inhibitors/chemistry , Drug Evaluation, Preclinical , Female , Ligands , Macaca mulatta , Protein Binding , Rabbits , Radiopharmaceuticals/adverse effects , Radiopharmaceuticals/chemistry , Tissue Distribution
3.
Neuroimage ; 213: 116725, 2020 06.
Article in English | MEDLINE | ID: mdl-32173412

ABSTRACT

Functional magnetic resonance imaging (fMRI) is a valuable tool for studying neural activations in the central nervous system of animals due to its wide spatial coverage and non-invasive nature. However, the advantages of fMRI have not been fully realized in functional studies in mice, especially in the olfactory system, possibly due to the lack of suitable anesthesia protocols with spontaneous breathing. Since mice are widely used in biomedical research, it is desirable to evaluate different anesthesia protocols for olfactory fMRI studies in mice. Dexmedetomidine (DEX) as a sedative/anesthetic has been introduced to fMRI studies in mice, but it has a limited anesthesia duration. To extend the anesthesia duration, DEX has been combined with a low dose of isoflurane (ISO) or ketamine (KET) in previous functional studies in mice. In this report, olfactory fMRI studies were performed under three anesthesia protocols (DEX alone, DEX/ISO, and DEX/KET) in three different groups of mice. Isoamyl-acetate was used as an odorant, and the odorant-induced neural activations were measured by blood oxygenation-level dependent (BOLD) fMRI. BOLD fMRI responses were observed in the olfactory bulb (OB), anterior olfactory nuclei (AON), and piriform cortex (Pir). Interestingly, BOLD fMRI activations were also observed in the prefrontal cortical region (PFC), which are most likely caused by the draining vein effect. The response in the OB showed no adaptation to either repeated odor stimulations or continuous odor exposure, but the response in the Pir showed adaptation during the continuous odor exposure. The data also shows that ISO suppresses the olfactory response in the OB and AON, while KET enhances the olfactory response in the Pir. Thus, DEX/KET should be an attractive anesthesia for olfactory fMRI in mice.


Subject(s)
Dexmedetomidine/pharmacology , Isoflurane/pharmacology , Ketamine/pharmacology , Olfactory Bulb/drug effects , Olfactory Perception/drug effects , Anesthetics/pharmacology , Animals , Hypnotics and Sedatives/pharmacology , Magnetic Resonance Imaging/methods , Mice , Models, Animal
4.
NMR Biomed ; 33(4): e4248, 2020 04.
Article in English | MEDLINE | ID: mdl-31977123

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is typically associated with early metabolic remodeling. Noninvasive imaging biomarkers that reflect these changes will be crucial in determining responses to early drug interventions in these patients. Mean intracellular water lifetime (τi ) has been shown to be partially inversely related to Na, K-ATPase transporter activity and may thus provide insight into the metabolic status in HFpEF patients. Here, we aim to perform regional quantification of τi using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in the nonhuman primate (NHP) heart and evaluate its region-specific variations under conditions of myocardial stress in the context of perturbed myocardial function. Cardiac stress was induced in seven naïve cynomolgus macaques using a dobutamine stepwise infusion protocol. All animals underwent 3 T cardiac dual-bolus DCE and tagging MRI experiments. The shutter-speed model was employed to quantify regional τi from the DCE-MR images. Additionally, τi values were correlated with myocardial strains. During cardiac stress, there was a significant decrease in global τi (192.9 ± 76.3 ms vs 321.6 ± 70 ms at rest, P < 0.05) in the left ventricle, together with an increase in global peak circumferential strain (-15.4% ± 2.7% vs -10.1% ± 2.9% at rest, P < 0.05). Specifically, slice-level analysis further revealed that a greater significant decrease in mean τi was observed in the apical region (ΔτI = 182.4 ms) compared with the basal (Δτi = 113.2 ms) and midventricular regions (Δτi = 108.4 ms). Regional analysis revealed that there was a greater significant decrease in mean τi in the anterior (Δτi = 243.9 ms) and antero-lateral (Δτi = 177.2 ms) regions. In the inferior and infero-septal regions, although a decrease in τi was observed, it was not significant. Whole heart regional quantification of τi is feasible using DCE-MRI. τi is sensitive to regional changes in metabolic state during cardiac stress, and its value correlates with strain.


Subject(s)
Myocardium/pathology , Stress, Physiological , Water/chemistry , Animals , Biomarkers/metabolism , Macaca fascicularis , Magnetic Resonance Imaging , Male , Time Factors
6.
Magn Reson Med ; 79(1): 48-61, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29083101

ABSTRACT

The MRI community is using quantitative mapping techniques to complement qualitative imaging. For quantitative imaging to reach its full potential, it is necessary to analyze measurements across systems and longitudinally. Clinical use of quantitative imaging can be facilitated through adoption and use of a standard system phantom, a calibration/standard reference object, to assess the performance of an MRI machine. The International Society of Magnetic Resonance in Medicine AdHoc Committee on Standards for Quantitative Magnetic Resonance was established in February 2007 to facilitate the expansion of MRI as a mainstream modality for multi-institutional measurements, including, among other things, multicenter trials. The goal of the Standards for Quantitative Magnetic Resonance committee was to provide a framework to ensure that quantitative measures derived from MR data are comparable over time, between subjects, between sites, and between vendors. This paper, written by members of the Standards for Quantitative Magnetic Resonance committee, reviews standardization attempts and then details the need, requirements, and implementation plan for a standard system phantom for quantitative MRI. In addition, application-specific phantoms and implementation of quantitative MRI are reviewed. Magn Reson Med 79:48-61, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Brain Mapping/methods , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Algorithms , Biomarkers/metabolism , Calibration , Contrast Media/chemistry , Elasticity , Humans , Image Processing, Computer-Assisted , Linear Models , Models, Theoretical , Perfusion , Reference Values , Reproducibility of Results , Signal-To-Noise Ratio
7.
Neuroimage ; 149: 348-360, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28163142

ABSTRACT

Olfactory adaptation, characterized by attenuation of response to repeated odor stimulations or continuous odor exposure, is an intrinsic feature of olfactory processing. Adaptation can be induced by either "synaptic depression" due to depletion of neurotransmitters, or "enhanced inhibition" onto principle neurons by local inhibitory interneurons in olfactory structures. It is not clear which mechanism plays a major role in olfactory adaptation. More importantly, molecular sources of enhanced inhibition have not been identified. In this study, olfactory responses to either repeated 40-s stimulations with interstimulus intervals (ISI) of 140-s or 30-min, or a single prolonged 200-s stimulus were measured by fMRI in different naïve rats. Olfactory adaptations in the olfactory bulb (OB), anterior olfactory nucleus (AON), and piriform cortex (PC) were observed only with repeated 40-s odor stimulations, and no olfactory adaptations were detected during the prolonged 200-s stimulation. Interestingly, in responses to repeated 40-s odor stimulations in the PC, the first odor stimulation induced positive activations, and odor stimulations under adapted condition induced negative activations. The negative activations suggest that "sparse coding" and "global inhibition" are the characteristics of olfactory processing in PC, and the global inhibition manifests only under an adapted condition, not a naïve condition. Further, we found that these adaptations were NMDA receptor dependent; an NMDA receptor antagonist (MK801) blocked the adaptations. Based on the mechanism that glutamate NMDA receptor plays a role in the inhibition onto principle neurons by interneurons, our data suggest that the olfactory adaptations are caused by enhanced inhibition from interneurons. Combined with the necessity of the interruption of odor stimulation to observe the adaptations, the molecular source for the enhanced inhibition is most likely an increased glutamate release from presynaptic terminals due to glutamate over-replenishment during the interruption of odor stimulation. Furthermore, with blockage of the adaptations, the data reveal that orbital, medial & prefrontal, and cingulate cortices (OmPFC) are involved in the olfactory processing.


Subject(s)
Adaptation, Physiological/physiology , Olfactory Bulb/physiology , Olfactory Perception/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Adaptation, Physiological/drug effects , Animals , Dizocilpine Maleate/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Female , Magnetic Resonance Imaging , Rats , Rats, Sprague-Dawley
8.
J Magn Reson Imaging ; 45(2): 556-569, 2017 02.
Article in English | MEDLINE | ID: mdl-27384520

ABSTRACT

PURPOSE: To identify reproducible and reliable noninvasive regional imaging biomarkers of cardiac function and perfusion at rest and under stress in healthy nonhuman primates (NHPs) that may be used in the future for the early characterization of preclinical heart failure models, to evaluate therapy, and for clinical translation. MATERIALS AND METHODS: Seven naive cynomolgus macaques underwent test-retest 3T cardiac MRI tagging and dual-bolus perfusion experiments. Regional cardiac function biomarkers, such as peak circumferential strain (CS), average diastolic strain-rate (DSR), contractile reserve (CR), diastolic reserve, peak torsion, and torsion reserve were quantified. Further, regional myocardial blood flow (MBF), myocardial perfusion reserve (MPR), and myocardial perfusion reserve-to-contractile reserve (MPR/CR) were also derived. Inter- and intraobserver reproducibility and test-retest reliability analyses were conducted using the reliability and generalizability coefficients including correlation coefficient (CC) and intraclass correlation coefficient (ICC). RESULTS: Overall, peak CS, DSR, and MBF are robust biomarkers at both rest and stress with moderate-good inter- and intraobserver reproducibility and test-retest reliability. At rest: intra-/interobserver reproducibility (CC): peak CS (0.81/0.81), DSR (0.81/0.81), MBF (0.72/0.57), peak torsion (0.79/0.79); test-retest reliability: (CC/ICC): peak CS (0.62/0.75), DSR (0.24/0.55), MBF (0.66/0.62), and peak torsion (0.79/0.78). Under stress: intra-/interobserver reproducibility (CC): peak CS (0.61/0.60), DSR (0.50/0.50), MBF (0.63/0.61), MPR (0.43/0.43), and peak torsion (0.38/0.38); test-retest reliability: (CC/ICC): peak CS (0.58/0.58), DSR (0.24/0.43), MBF (0.58/0.58), MPR (0.43/0.38), and peak torsion (0.38/0.38). CONCLUSION: We demonstrated the feasibility of using cardiac MRI to characterize left ventricular functional and perfusion responses to stress in an NHP species, and specific robust biomarkers such as peak CS, DSR, MBF, diastolic reserve, and MPR have been identified for clinical translation and drug research. LEVEL OF EVIDENCE: 1 J. Magn. Reson. Imaging 2017;45:556-569.


Subject(s)
Blood Flow Velocity/physiology , Coronary Circulation/physiology , Dobutamine , Exercise Test/methods , Heart Ventricles/diagnostic imaging , Magnetic Resonance Imaging, Cine/methods , Ventricular Function, Left/physiology , Animals , Biomarkers , Humans , Macaca fascicularis , Magnetic Resonance Angiography/methods , Male , Reproducibility of Results , Sensitivity and Specificity
9.
J Magn Reson Imaging ; 46(1): 124-133, 2017 07.
Article in English | MEDLINE | ID: mdl-27775841

ABSTRACT

PURPOSE: To present the testretest and contrast dose effect results of cerebral blood volume (CBV) functional MRI (fMRI) in healthy human volunteers using ferumoxytol (Feraheme), an ultrasmall-superparamagnetic iron oxide (USPIO) nanoparticle. MATERIALS AND METHODS: This was an open-label, two-period, fixed-sequence study in healthy young volunteers. In eight subjects, using a 3 Tesla field strength system, blood oxygen level dependent (BOLD) and CBV fMRI were acquired in response to a visual black-and-white checkboard stimulation paradigm using an escalating ferumoxytol dose design (250, 350, and 510 mg iron). Multiple outcome measures were analyzed including absolute percent signal change (|PSC|, primary endpoint), its contrast-to-noise ratio (CNR) and corresponding z-score, percent CBV change (ΔCBV) and respective CNR, concentration of Fe, and baseline CBV. RESULTS: The |PSC| in the visual cortex increased with ferumoxytol dose and was up to 3 × higher than BOLD fMRI. Test-retest reliability was comparable for BOLD and CBV fMRI. Intraclass correlation coefficients (ICCs) for |PSC| were 0.3 (one-sided 95% lower confidence limit = 0.00), 0.81 (0.47), 0.48 (0.00), and 0.3 (0.00) for BOLD and the 250-, 350-, and 510-mg doses of ferumoxytol, respectively. For ΔCBV, ICCs were 0.77 (0.37), 0.48 (0.00), and 0.49 (0.00) for 250 mg, 350 mg, and 510 mg, respectively. CONCLUSION: This work demonstrates that CBV fMRI techniques and endpoints are dose dependent, robust and have good test-retest repeatability. It also confirms previous findings that USPIO enhances sensitivity of fMRI stimulus-response endpoints. LEVEL OF EVIDENCE: 1 J. MAGN. RESON. IMAGING 2017;46:124-133.


Subject(s)
Blood Flow Velocity/physiology , Cerebrovascular Circulation , Dextrans/administration & dosage , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/administration & dosage , Visual Cortex/physiology , Visual Perception/physiology , Blood Volume , Blood Volume Determination/methods , Brain Mapping/methods , Contrast Media/administration & dosage , Dose-Response Relationship, Drug , Evoked Potentials, Visual/physiology , Female , Humans , Male , Reference Values , Reproducibility of Results , Sensitivity and Specificity
10.
Neuroimage ; 127: 445-455, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26522425

ABSTRACT

Cerebral blood volume (CBV) fMRI with ultrasmall superparamagnetic iron oxide particles (USPIO) as a contrast agent was used to investigate olfactory processing in rats. fMRI data were acquired in sixteen 0.75-mm coronal slices covering the olfactory bulb (OB) and higher olfactory regions (HOR), including the anterior olfactory nucleus and piriform cortex. For each animal, multiple consecutive fMRI measurements were made during a 3-h experiment session, with each measurement consisting of a baseline period, an odorant stimulation period, and a recovery period. Two different stimulation paradigms with a stimulation period of 40s or 80s, respectively, were used to study olfactory processing. Odorant-induced CBV increases were robustly observed in the OB and HOR of each individual animal. Olfactory adaptation, which is characterized by an attenuation of responses to continuous exposure or repeated stimulations, has different characteristics in the OB and HOR. For adaptation to repeated stimuli, while it was observed in both the OB and HOR, CBV responses in the HOR were attenuated more significantly than responses in the OB. In contrast, within each continuous 40-s or 80-s odor exposure, CBV responses in the OB were stable and did not show adaptation, but the CBV responses in the HOR were state dependent, with no adaptation during initial exposures, but significant adaptation during following exposures. These results support previous reports that HOR plays a more significant role than OB in olfactory habituation. The technical approach presented in this study should enable more extensive fMRI studies of olfactory processing in rats.


Subject(s)
Habituation, Psychophysiologic/physiology , Olfactory Bulb/physiology , Olfactory Cortex/physiology , Olfactory Perception/physiology , Animals , Brain Mapping , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Olfactory Pathways/physiology , Rats , Rats, Sprague-Dawley
11.
Neuroimage ; 106: 364-72, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25498426

ABSTRACT

Cerebral blood volume (CBV) fMRI with superparamagnetic iron oxide nanoparticles (USPIO) as contrast agent was used to investigate the odorant-induced olfaction in anesthetized rhesus monkeys. fMRI data were acquired in 24 axial slices covering the entire brain, with isoamyl-acetate as the odor stimulant. For each experiment, multiple fMRI measurements were made during a 1- or 2-h period, with each measurement consisting of a baseline period, a stimulation period, and a recovery period. Three different stimulation paradigms with a stimulation period of 1 min, 2 min, or 8 min, respectively, were used to study the olfactory responses in the olfactory bulb (OB). Odorant-induced CBV increases were observed in the OB of each individual monkey. The spatial and temporal activation patterns were reproducible within and between animals. The sensitivity of CBV fMRI in OB was comparable with the sensitivities reported in previous animal fMRI studies. The CBV responses during the 1-min, 2-min, or 8-min odor stimulation period were relatively stable, and did not show attenuation. The amplitudes of CBV response to the repeated stimuli during the 1- or 2-h period were also stable. The stable CBV response in the OB to both continuous and repeated odor stimuli suggests that the OB may not play a major role in olfactory habituation. The technical approach described in this report can enable more extensive fMRI studies of olfactory processing in OB of both humans and non-human primates.


Subject(s)
Brain Mapping/methods , Habituation, Psychophysiologic/physiology , Magnetic Resonance Imaging/methods , Olfactory Bulb/physiology , Olfactory Perception/physiology , Smell/physiology , Animals , Blood Volume/physiology , Cerebrovascular Circulation/physiology , Contrast Media , Female , Ferric Compounds , Macaca mulatta , Nanoparticles , Odorants , Olfactory Bulb/blood supply , Oxygen/blood
12.
Bioorg Med Chem Lett ; 25(21): 4893-4898, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26077491

ABSTRACT

Phosphodiesterase 10A (PDE10A) inhibition has recently been identified as a potential mechanism to treat multiple symptoms that manifest in schizophrenia. In order to facilitate preclinical development and support key proof-of-concept clinical trials of novel PDE10A inhibitors, it is critical to discover positron emission tomography (PET) tracers that enable plasma concentration/PDE10A occupancy relationships to be established across species with structurally diverse PDE10A inhibitors. In this Letter, we describe how a high-throughput screening hit was optimized to provide [(11)C]MK-8193 (8j), a PET tracer that supports the determination of plasma concentration/PDE10A occupancy relationships for structurally diverse series of PDE10A inhibitors in both rat and rhesus monkey.


Subject(s)
Drug Discovery , Heterocyclic Compounds, 2-Ring/chemistry , Phosphodiesterase Inhibitors/metabolism , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Positron-Emission Tomography , Animals , Brain/metabolism , Carbon Radioisotopes , Crystallography, X-Ray , Dose-Response Relationship, Drug , Heterocyclic Compounds, 2-Ring/chemical synthesis , Macaca mulatta , Models, Molecular , Molecular Structure , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/chemistry , Phosphoric Diester Hydrolases/blood , Rats , Structure-Activity Relationship
13.
J Pharmacol Exp Ther ; 345(1): 41-51, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23370795

ABSTRACT

Pharmacological magnetic resonance imaging (phMRI) is one method by which a drug's pharmacodynamic effects in the brain can be assessed. Although phMRI has been frequently used in preclinical and clinical settings, the extent to which a phMRI signature for a compound translates between rodents and humans has not been systematically examined. In the current investigation, we aimed to build on recent clinical work in which the functional response to 0.1 and 0.2 mg/70 kg i.v. buprenorphine (partial µ-opioid receptor agonist) was measured in healthy humans. Here, we measured the phMRI response to 0.04 and 0.1 mg/kg i.v. buprenorphine in conscious, naive rats to establish the parallelism of the phMRI signature of buprenorphine across species. PhMRI of 0.04 and 0.1 mg/kg i.v. buprenorphine yielded dose-dependent activation in a brain network composed of the somatosensory cortex, cingulate, insula, striatum, thalamus, periaqueductal gray, and cerebellum. Similar dose-dependent phMRI activation was observed in the human phMRI studies. These observations indicate an overall preservation of pharmacodynamic responses to buprenorphine between conscious, naive rodents and healthy human subjects, particularly in brain regions implicated in pain and analgesia. This investigation further demonstrates the usefulness of phMRI as a translational tool in neuroscience research that can provide mechanistic insight and guide dose selection in drug development.


Subject(s)
Analgesics, Opioid/pharmacology , Brain/drug effects , Buprenorphine/pharmacology , Magnetic Resonance Imaging , Neurosciences , Animals , Brain Mapping/methods , Cross-Over Studies , Dose-Response Relationship, Drug , Double-Blind Method , Humans , Infusions, Intravenous , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Male , Neurosciences/instrumentation , Neurosciences/methods , Rats , Rats, Sprague-Dawley , Receptors, Opioid, mu/agonists , Species Specificity
14.
J Pharmacol Exp Ther ; 347(2): 478-86, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23975906

ABSTRACT

Calcitonin gene-related peptide (CGRP) is a potent neuropeptide whose agonist interaction with the CGRP receptor (CGRP-R) in the periphery promotes vasodilation, neurogenic inflammation and trigeminovascular sensory activation. This process is implicated in the cause of migraine headaches, and CGRP-R antagonists in clinical development have proven effective in treating migraine-related pain in humans. CGRP-R is expressed on blood vessel smooth muscle and sensory trigeminal neurons and fibers in the periphery as well as in the central nervous system. However, it is not clear what role the inhibition of central CGRP-R plays in migraine pain relief. To this end, the CGRP-R positron emission tomography (PET) tracer [(11)C]MK-4232 (2-[(8R)-8-(3,5-difluorophenyl)-6,8-[6-(11)C]dimethyl-10-oxo-6,9-diazaspiro[4.5]decan-9-yl]-N-[(2R)-2'-oxospiro[1,3-dihydroindene-2,3'-1H-pyrrolo[2,3-b]pyridine]-5-yl]acetamide) was discovered and developed for use in clinical PET studies. In rhesus monkeys and humans, [(11)C]MK-4232 displayed rapid brain uptake and a regional brain distribution consistent with the known distribution of CGRP-R. Monkey PET studies with [(11)C]MK-4232 after intravenous dosing with CGRP-R antagonists validated the ability of [(11)C]MK-4232 to detect changes in CGRP-R occupancy in proportion to drug plasma concentration. Application of [(11)C]MK-4232 in human PET studies revealed that telcagepant achieved only low receptor occupancy at an efficacious dose (140 mg PO). Therefore, it is unlikely that antagonism of central CGRP-R is required for migraine efficacy. However, it is not known whether high central CGRP-R antagonism may provide additional therapeutic benefit.


Subject(s)
Acetanilides/pharmacokinetics , Analgesics/pharmacokinetics , Azepines/pharmacokinetics , Brain/metabolism , Calcitonin Gene-Related Peptide Receptor Antagonists , Imidazoles/pharmacokinetics , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Spiro Compounds/pharmacokinetics , Acetanilides/chemistry , Adult , Analgesics/therapeutic use , Animals , Azepines/therapeutic use , Brain/diagnostic imaging , Carbon Radioisotopes , Female , Humans , Imidazoles/therapeutic use , Macaca mulatta , Male , Middle Aged , Migraine Disorders/drug therapy , Migraine Disorders/metabolism , Molecular Structure , Protein Binding , Radiopharmaceuticals/chemistry , Species Specificity , Spiro Compounds/chemistry , Tissue Distribution , Young Adult
15.
Alzheimers Dement (N Y) ; 9(1): e12372, 2023.
Article in English | MEDLINE | ID: mdl-36873926

ABSTRACT

Background: The positron emission tomography (PET) radiotracer [18F]MK-6240 exhibits high specificity for neurofibrillary tangles (NFTs) of tau protein in Alzheimer's disease (AD), high sensitivity to medial temporal and neocortical NFTs, and low within-brain background. Objectives were to develop and validate a reproducible, clinically relevant visual read method supporting [18F]MK-6240 use to identify and stage AD subjects versus non-AD and controls. Methods: Five expert readers used their own methods to assess 30 scans of mixed diagnosis (47% cognitively normal, 23% mild cognitive impairment, 20% AD, 10% traumatic brain injury) and provided input regarding regional and global positivity, features influencing assessment, confidence, practicality, and clinical relevance. Inter-reader agreement and concordance with quantitative values were evaluated to confirm that regions could be read reliably. Guided by input regarding clinical applicability and practicality, read classifications were defined. The readers read the scans using the new classifications, establishing by majority agreement a gold standard read for those scans. Two naïve readers were trained and read the 30-scan set, providing initial validation. Inter-rater agreement was further tested by two trained independent readers in 131 scans. One of these readers used the same method to read a full, diverse database of 1842 scans; relationships between read classification, clinical diagnosis, and amyloid status as available were assessed. Results: Four visual read classifications were determined: no uptake, medial temporal lobe (MTL) only, MTL and neocortical uptake, and uptake outside MTL. Inter-rater kappas were 1.0 for the naïve readers gold standard scans read and 0.98 for the independent readers 131-scan read. All scans in the full database could be classified; classification frequencies were concordant with NFT histopathology literature. Discussion: This four-class [18F]MK-6240 visual read method captures the presence of medial temporal signal, neocortical expansion associated with disease progression, and atypical distributions that may reflect different phenotypes. The method demonstrates excellent trainability, reproducibility, and clinical relevance supporting clinical use. Highlights: A visual read method has been developed for [18F]MK-6240 tau positron emission tomography.The method is readily trainable and reproducible, with inter-rater kappas of 0.98.The read method has been applied to a diverse set of 1842 [18F]MK-6240 scans.All scans from a spectrum of disease states and acquisitions could be classified.Read classifications are consistent with histopathological neurofibrillary tangle staging literature.

16.
Neuroimage ; 59(4): 3762-73, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22119647

ABSTRACT

Buprenorphine (BUP) is a partial agonist at µ-, δ- and ORL1 (opioid receptor-like)/nociceptin receptors and antagonist at the κ-opioid receptor site. BUP is known to have both analgesic as well as antihyperalgesic effects via its central activity, and is used in the treatment of moderate to severe chronic pain conditions. Recently, it was shown that intravenous (IV) administration of 0.2mg/70 kg BUP modulates the blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) response to acute noxious stimuli in healthy human subjects. The present study extends these observations by investigating the effects of BUP dose and route of administration on central nervous system (CNS) pain circuitry. Specifically, the modulation of evoked pain BOLD responses and resting state functional connectivity was measured following IV (0.1 and 0.2mg/70 kg) and sublingual (SL) (2mg) BUP administration in healthy human subjects. While 0.1mg/70 kg IV BUP is sub-analgesic, both 0.2mg/70 kg IV BUP and 2.0mg SL BUP are analgesic doses of the drug. Evoked BOLD responses were clearly modulated in a dose-dependent manner. The analgesic doses of BUP by both routes of administration yielded a potentiation in limbic/mesolimbic circuitry and attenuation in sensorimotor/sensory-discriminative circuitry. In addition, robust decreases in functional connectivity between the putamen and the sensorimotor/sensory-discriminative structures were observed at the two analgesic doses subsequent to measuring the maximum plasma BUP concentrations (C(max)). The decreases in functional connectivity within the sensorimotor/sensory-discriminative circuitry were also observed to be dose-dependent in the IV administration cohorts. These reproducible and consistent functional CNS measures at clinically effective doses of BUP demonstrate the potential of evoked pain fMRI and resting-state functional connectivity as objective tools that can inform the process of dose selection. Such methods may be useful during early clinical phase evaluation of potential analgesics in drug development.


Subject(s)
Analgesics, Opioid/pharmacology , Brain/drug effects , Brain/physiopathology , Buprenorphine/pharmacology , Pain/drug therapy , Pain/physiopathology , Administration, Sublingual , Adult , Analgesics, Opioid/administration & dosage , Buprenorphine/administration & dosage , Cross-Over Studies , Dose-Response Relationship, Drug , Double-Blind Method , Humans , Injections, Intravenous , Magnetic Resonance Imaging , Male
17.
Front Endocrinol (Lausanne) ; 12: 641722, 2021.
Article in English | MEDLINE | ID: mdl-34122330

ABSTRACT

Non-invasive beta cell function measurements may provide valuable information for improving diabetes diagnostics and disease management as the integrity and function of pancreatic beta cells have been found to be compromised in Type-1 and Type-2 diabetes. Currently, available diabetes assays either lack functional information or spatial identification of beta cells. In this work, we introduce a method to assess the function of beta cells in the non-human primate pancreas non-invasively with MRI using a Gd-based zinc(II) sensor as a contrast agent, Gd-CP027. Additionally, we highlight the role of zinc(II) ions in the paracrine signaling of the endocrine pancreas via serological measurements of insulin and c-peptide. Non-human primates underwent MRI exams with simultaneous blood sampling during a Graded Glucose Infusion (GGI) with Gd-CP027 or with a non-zinc(II) sensitive contrast agent, gadofosveset. Contrast enhancement of the pancreas resulting from co-release of zinc(II) ion with insulin was observed focally when using the zinc(II)-specific agent, Gd-CP027, whereas little enhancement was detected when using gadofosveset. The contrast enhancement detected by Gd-CP027 increased in parallel with an increased dose of infused glucose. Serological measurements of C-peptide and insulin indicate that Gd-CP027, a high affinity zinc(II) contrast agent, potentiates their secretion only as a function of glucose stimulation. Taken in concert, this assay offers the possibility of detecting beta cell function in vivo non-invasively with MRI and underscores the role of zinc(II) in endocrine glucose metabolism.


Subject(s)
Contrast Media/pharmacology , Gadolinium/chemistry , Insulin-Secreting Cells/drug effects , Magnetic Resonance Imaging/methods , Zinc/chemistry , Albumins/chemistry , Animals , Female , Glucose/metabolism , Insulin , Ions , Macaca mulatta , Male , Pancreas/metabolism , Peptides/chemistry , Primates/metabolism , Protein Binding
18.
Mol Imaging Biol ; 23(2): 250-259, 2021 04.
Article in English | MEDLINE | ID: mdl-33104972

ABSTRACT

PURPOSE: Programmed cell death-1 receptor (PD-1) and its ligand (PD-L1) are the targets for immunotherapy in many cancer types. Although PD-1 blockade has therapeutic effects, the efficacy differs between patients. Factors contributing to this variability are PD-L1 expression levels and immune cells present in tumors. However, it is not well understood how PD-1 expression in the tumor microenvironment impacts immunotherapy response. Thus, imaging of PD-1-expressing immune cells is of interest. This study aims to evaluate the biodistribution of Zirconium-89 (89Zr)-labeled pembrolizumab, a humanized IgG4 kappa monoclonal antibody targeting PD-1, in healthy cynomolgus monkeys as a translational model of tracking PD-1-positive immune cells. PROCEDURES: Pembrolizumab was conjugated with the tetrafluorophenol-N-succinyl desferal-Fe(III) ester (TFP-N-sucDf) and subsequently radiolabeled with 89Zr. Four cynomolgus monkeys with no previous exposure to humanized monoclonal antibodies received tracer only or tracer co-injected with pembrolizumab intravenously over 5 min. Thereafter, a static whole-body positron emission tomography (PET) scan was acquired with 10 min per bed position on days 0, 2, 5, and 7. Image-derived standardized uptake values (SUVmean) were quantified by region of interest (ROI) analysis. RESULTS: 89Zr-N-sucDf-pembrolizumab was synthesized with high radiochemical purity (> 99 %) and acceptable molar activity (> 7 MBq/nmol). In animals dosed with tracer only, 89Zr-N-sucDf-pembrolizumab distribution in lymphoid tissues such as mesenteric lymph nodes, spleen, and tonsils increased over time. Except for the liver, low radiotracer distribution was observed in all non-lymphoid tissue including the lung, muscle, brain, heart, and kidney. When a large excess of pembrolizumab was co-administered with a radiotracer, accumulation in the lymph nodes, spleen, and tonsils was reduced, suggestive of target-mediated accumulation. CONCLUSIONS: 89Zr-N-sucDf-pembrolizumab shows preferential uptake in the lymphoid tissues including the lymph nodes, spleen, and tonsils. 89Zr-N-sucDf-pembrolizumab may be useful in tracking the distribution of a subset of immune cells in non-human primates and humans. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02760225.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacokinetics , Molecular Imaging/methods , Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Programmed Cell Death 1 Receptor/metabolism , Animals , Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/pharmacokinetics , Female , Immunotherapy/methods , Macaca fascicularis , Male , Models, Animal , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/metabolism , Programmed Cell Death 1 Receptor/immunology , Radioisotopes , Tissue Distribution , Zirconium
19.
Mol Imaging Biol ; 23(2): 241-249, 2021 04.
Article in English | MEDLINE | ID: mdl-33098025

ABSTRACT

PURPOSE: In vivo imaging of programmed death ligand 1 (PD-L1) during immunotherapy could potentially monitor changing PD-L1 expression and PD-L1 expression heterogeneity within and across tumors. Some protein constructs can be used for same-day positron emission tomography (PET) imaging. Previously, we evaluated the PD-L1-targeting Affibody molecule [18F]AlF-NOTA-ZPD-L1_1 as a PET tracer in a mouse tumor model of human PD-L1 expression. In this study, we evaluated the affinity-matured Affibody molecule ZPD-L1_4, to determine if improved affinity for PD-L1 resulted in increased in vivo targeting of PD-L1. PROCEDURES: ZPD-L1_4 was conjugated with NOTA and radiolabeled with either [18F]AlF or 68Ga. [18F]AlF-NOTA-ZPD-L1_4 and [68Ga]NOTA-ZPD-L1_4 were evaluated in immunocompromised mice with LOX (PD-L1+) and SUDHL6 (PD-L1-) tumors with PET and ex vivo biodistribution measurements. In addition, whole-body PET studies were performed in rhesus monkeys to predict human biodistribution in a model with tracer binding to endogenous PD-L1, and to calculate absorbed radiation doses. RESULTS: Ex vivo biodistribution measurements showed that both tracers had > 25 fold higher accumulation in LOX tumors than SUDHL6 ([18F]AlF-NOTA-ZPD-L1_4: LOX: 8.7 ± 0.7 %ID/g (N = 4) SUDHL6: 0.2 ± 0.01 %ID/g (N = 6), [68Ga]NOTA-ZPD-L1_4: LOX: 15.8 ± 1.0 %ID/g (N = 6) SUDHL6: 0.6 ± 0.1 %ID/g (N = 6)), considerably higher than ZPD-L1_1. In rhesus monkeys, both PET tracers showed fast clearance through kidneys and low background signal in the liver ([18F]AlF-NOTA-ZPD-L1_4: 1.26 ± 0.13 SUV, [68Ga]NOTA-ZPD-L1_4: 1.11 ± 0.06 SUV). PD-L1-expressing lymph nodes were visible in PET images, indicating in vivo PD-L1 targeting. Dosimetry estimates suggest that both PET tracers can be used for repeated clinical studies, although high kidney accumulation may limit allowable radioactive doses. CONCLUSIONS: [18F]AlF-NOTA-ZPD-L1_4 and [68Ga]NOTA-ZPD-L1_4 are promising candidates for same-day clinical PD-L1 PET imaging, warranting clinical evaluation. The ability to use either [18F] or [68Ga] may expand access to clinical sites.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , B7-H1 Antigen/metabolism , Neoplasms/diagnostic imaging , Positron-Emission Tomography/methods , Radiometry/methods , Radiopharmaceuticals/pharmacokinetics , Animals , Antibodies, Monoclonal/administration & dosage , B7-H1 Antigen/immunology , Cell Line, Tumor , Fluorine Radioisotopes , Gallium Radioisotopes , Humans , Immunotherapy/methods , Macaca mulatta , Mice , Molecular Imaging/methods , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/metabolism , Radiopharmaceuticals/administration & dosage , Tissue Distribution , Xenograft Model Antitumor Assays
20.
J Nucl Med ; 60(1): 107-114, 2019 01.
Article in English | MEDLINE | ID: mdl-29880509

ABSTRACT

18F-MK-6240 (18F-labeled 6-(fluoro)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine) is a highly selective, subnanomolar-affinity PET tracer for imaging neurofibrillary tangles (NFTs). Plasma kinetics, brain uptake, and preliminary quantitative analysis of 18F-MK-6240 in healthy elderly (HE) subjects, subjects with clinically probable Alzheimer disease (AD), and subjects with amnestic mild cognitive impairment were characterized in a study that is, to our knowledge, the first to be performed on humans. Methods: Dynamic PET scans of up to 150 min were performed on 4 cognitively normal HE subjects, 4 AD subjects, and 2 amnestic mild cognitive impairment subjects after a bolus injection of 152-169 MBq of 18F-MK-6240 to evaluate tracer kinetics and distribution in brain. Regional SUV ratio (SUVR) and distribution volume ratio were determined using the cerebellar cortex as a reference region. Total distribution volume was assessed by compartmental modeling using radiometabolite-corrected input function in a subgroup of 6 subjects. Results:18F-MK-6240 had rapid brain uptake with a peak SUV of 3-5, followed by a uniformly quick washout from all brain regions in HE subjects; slower clearance was observed in regions commonly associated with NFT deposition in AD subjects. In AD subjects, SUVR between 60 and 90 min after injection was high (approximately 2-4) in regions associated with NFT deposition, whereas in HE subjects, SUVR was approximately 1 across all brain regions, suggesting high tracer selectivity for binding NFTs in vivo. 18F-MK-6240 total distribution volume was approximately 2- to 3-fold higher in neocortical and medial temporal brain regions of AD subjects than in HE subjects and stabilized by 60 min in both groups. Distribution volume ratio estimated by the Logan reference tissue model or compartmental modeling correlated well (R2 > 0.9) to SUVR from 60 to 90 min for AD subjects. Conclusion:18F-MK-6240 exhibited favorable kinetics and high binding levels to brain regions with a plausible pattern for NFT deposition in AD subjects. In comparison, negligible tracer binding was observed in HE subjects. This pilot study suggests that simplified ratio methods such as SUVR can be used to quantify NFT binding. These results support further clinical development of 18F-MK-6240 for potential application in longitudinal studies.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Brain/pathology , Fluorine Radioisotopes , Isoquinolines/metabolism , Neurofibrillary Tangles/metabolism , Positron-Emission Tomography , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Brain/diagnostic imaging , Brain/metabolism , Case-Control Studies , Female , Humans , Isoquinolines/blood , Kinetics , Magnetic Resonance Imaging , Male , Middle Aged , Pilot Projects , Radioactive Tracers
SELECTION OF CITATIONS
SEARCH DETAIL