Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Nature ; 630(8017): 752-761, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867045

ABSTRACT

Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other diseases1,2. Most mutations begin as nucleotide mismatches or damage in one of the two strands of the DNA before becoming double-strand mutations if unrepaired or misrepaired3,4. However, current DNA-sequencing technologies cannot accurately resolve these initial single-strand events. Here we develop a single-molecule, long-read sequencing method (Hairpin Duplex Enhanced Fidelity sequencing (HiDEF-seq)) that achieves single-molecule fidelity for base substitutions when present in either one or both DNA strands. HiDEF-seq also detects cytosine deamination-a common type of DNA damage-with single-molecule fidelity. We profiled 134 samples from diverse tissues, including from individuals with cancer predisposition syndromes, and derive from them single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumours deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples that are deficient in only polymerase proofreading. We also define a single-strand damage signature for APOBEC3A. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. As double-strand DNA mutations are only the end point of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable studies of how mutations arise in a variety of contexts, especially in cancer and ageing.


Subject(s)
DNA Damage , DNA Mismatch Repair , Neoplasms , Humans , DNA Mismatch Repair/genetics , Deamination , Neoplasms/genetics , Mutation , Sequence Analysis, DNA , Cytidine Deaminase/metabolism , Cytidine Deaminase/genetics , Base Pair Mismatch/genetics , Cytosine/metabolism , Single Molecule Imaging/methods , APOBEC Deaminases/genetics , APOBEC Deaminases/metabolism , DNA, Single-Stranded/genetics , DNA Replication/genetics , Proteins
2.
Cell ; 151(3): 483-96, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-23101622

ABSTRACT

A major unanswered question in neuroscience is whether there exists genomic variability between individual neurons of the brain, contributing to functional diversity or to an unexplained burden of neurological disease. To address this question, we developed a method to amplify genomes of single neurons from human brains. Because recent reports suggest frequent LINE-1 (L1) retrotransposition in human brains, we performed genome-wide L1 insertion profiling of 300 single neurons from cerebral cortex and caudate nucleus of three normal individuals, recovering >80% of germline insertions from single neurons. While we find somatic L1 insertions, we estimate <0.6 unique somatic insertions per neuron, and most neurons lack detectable somatic insertions, suggesting that L1 is not a major generator of neuronal diversity in cortex and caudate. We then genotyped single cortical cells to characterize the mosaicism of a somatic AKT3 mutation identified in a child with hemimegalencephaly. Single-neuron sequencing allows systematic assessment of genomic diversity in the human brain.


Subject(s)
Caudate Nucleus/cytology , Cerebral Cortex/cytology , Long Interspersed Nucleotide Elements , Mutation , Neurons/metabolism , Single-Cell Analysis , Caudate Nucleus/metabolism , Cerebral Cortex/metabolism , Child , Chromosomes, Human, Pair 18 , Genome-Wide Association Study , Humans , Male , Malformations of Cortical Development/genetics , Malformations of Cortical Development/pathology , Mosaicism , Proto-Oncogene Proteins c-akt/genetics , Trisomy
3.
Cell ; 151(5): 1097-112, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23178126

ABSTRACT

Microcephaly is a neurodevelopmental disorder causing significantly reduced cerebral cortex size. Many known microcephaly gene products localize to centrosomes, regulating cell fate and proliferation. Here, we identify and characterize a nuclear zinc finger protein, ZNF335/NIF-1, as a causative gene for severe microcephaly, small somatic size, and neonatal death. Znf335 null mice are embryonically lethal, and conditional knockout leads to severely reduced cortical size. RNA-interference and postmortem human studies show that ZNF335 is essential for neural progenitor self-renewal, neurogenesis, and neuronal differentiation. ZNF335 is a component of a vertebrate-specific, trithorax H3K4-methylation complex, directly regulating REST/NRSF, a master regulator of neural gene expression and cell fate, as well as other essential neural-specific genes. Our results reveal ZNF335 as an essential link between H3K4 complexes and REST/NRSF and provide the first direct genetic evidence that this pathway regulates human neurogenesis and neuronal differentiation.


Subject(s)
Carrier Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Neural Stem Cells/metabolism , Neurogenesis , Nuclear Proteins/metabolism , Animals , Cell Differentiation , Cell Proliferation , DNA-Binding Proteins , Female , Gene Knockdown Techniques , Genes, Lethal , Histone-Lysine N-Methyltransferase , Humans , Male , Mice , Mice, Knockout , Microcephaly/metabolism , Multiprotein Complexes/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Repressor Proteins/metabolism , Transcription Factors
4.
Hum Mol Genet ; 32(9): 1552-1564, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36611016

ABSTRACT

Congenital myasthenic syndrome (CMS) is a heterogeneous condition associated with 34 different genes, including SLC5A7, which encodes the high-affinity choline transporter 1 (CHT1). CHT1 is expressed in presynaptic neurons of the neuromuscular junction where it uses the inward sodium gradient to reuptake choline. Biallelic CHT1 mutations often lead to neonatal lethality, and less commonly to non-lethal motor weakness and developmental delays. Here, we report detailed biochemical characterization of two novel mutations in CHT1, p.I294T and p.D349N, which we identified in an 11-year-old patient with a history of neonatal respiratory distress, and subsequent hypotonia and global developmental delay. Heterologous expression of each CHT1 mutant in human embryonic kidney cells showed two different mechanisms of reduced protein function. The p.I294T CHT1 mutant transporter function was detectable, but its abundance and half-life were significantly reduced. In contrast, the p.D349N CHT1 mutant was abundantly expressed at the cell membrane, but transporter function was absent. The residual function of the p.I294T CHT1 mutant may explain the non-lethal form of CMS in this patient, and the divergent mechanisms of reduced CHT1 function that we identified may guide future functional studies of the CHT1 myasthenic syndrome. Based on these in vitro studies that provided a diagnosis, treatment with cholinesterase inhibitor together with physical and occupational therapy significantly improved the patient's strength and quality of life.


Subject(s)
Mutant Proteins , Mutation , Myasthenic Syndromes, Congenital , Symporters , Myasthenic Syndromes, Congenital/drug therapy , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/metabolism , Myasthenic Syndromes, Congenital/rehabilitation , Humans , Male , Child , HEK293 Cells , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Half-Life , Cell Membrane/metabolism , Protein Transport , Staurosporine/pharmacology , Pyridostigmine Bromide/therapeutic use , Quality of Life , Symporters/chemistry , Symporters/genetics , Symporters/metabolism
5.
Am J Hum Genet ; 109(10): 1867-1884, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36130591

ABSTRACT

Au-Kline syndrome (AKS) is a neurodevelopmental disorder associated with multiple malformations and a characteristic facial gestalt. The first individuals ascertained carried de novo loss-of-function (LoF) variants in HNRNPK. Here, we report 32 individuals with AKS (26 previously unpublished), including 13 with de novo missense variants. We propose new clinical diagnostic criteria for AKS that differentiate it from the clinically overlapping Kabuki syndrome and describe a significant phenotypic expansion to include individuals with missense variants who present with subtle facial features and few or no malformations. Many gene-specific DNA methylation (DNAm) signatures have been identified for neurodevelopmental syndromes. Because HNRNPK has roles in chromatin and epigenetic regulation, we hypothesized that pathogenic variants in HNRNPK may be associated with a specific DNAm signature. Here, we report a unique DNAm signature for AKS due to LoF HNRNPK variants, distinct from controls and Kabuki syndrome. This DNAm signature is also identified in some individuals with de novo HNRNPK missense variants, confirming their pathogenicity and the phenotypic expansion of AKS to include more subtle phenotypes. Furthermore, we report that some individuals with missense variants have an "intermediate" DNAm signature that parallels their milder clinical presentation, suggesting the presence of an epi-genotype phenotype correlation. In summary, the AKS DNAm signature may help elucidate the underlying pathophysiology of AKS. This DNAm signature also effectively supported clinical syndrome delineation and is a valuable aid for variant interpretation in individuals where a clinical diagnosis of AKS is unclear, particularly for mild presentations.


Subject(s)
DNA Methylation , Intellectual Disability , Abnormalities, Multiple , Chromatin , DNA Methylation/genetics , Epigenesis, Genetic , Face/abnormalities , Hematologic Diseases , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Humans , Intellectual Disability/genetics , Phenotype , Vestibular Diseases
6.
Annu Rev Genomics Hum Genet ; 22: 171-197, 2021 08 31.
Article in English | MEDLINE | ID: mdl-33722077

ABSTRACT

Over the past decade, genomic analyses of single cells-the fundamental units of life-have become possible. Single-cell DNA sequencing has shed light on biological questions that were previously inaccessible across diverse fields of research, including somatic mutagenesis, organismal development, genome function, and microbiology. Single-cell DNA sequencing also promises significant future biomedical and clinical impact, spanning oncology, fertility, and beyond. While single-cell approaches that profile RNA and protein have greatly expanded our understanding of cellular diversity, many fundamental questions in biology and important biomedical applications require analysis of the DNA of single cells. Here, we review the applications and biological questions for which single-cell DNA sequencing is uniquely suited or required. We include a discussion of the fields that will be impacted by single-cell DNA sequencing as the technology continues to advance.


Subject(s)
Genome , Genomics , DNA , Humans , RNA , Sequence Analysis, DNA
7.
Genome Res ; 27(8): 1323-1335, 2017 08.
Article in English | MEDLINE | ID: mdl-28630177

ABSTRACT

While next-generation sequencing has accelerated the discovery of human disease genes, progress has been largely limited to the "low hanging fruit" of mutations with obvious exonic coding or canonical splice site impact. In contrast, the lack of high-throughput, unbiased approaches for functional assessment of most noncoding variants has bottlenecked gene discovery. We report the integration of transcriptome sequencing (RNA-seq), which surveys all mRNAs to reveal functional impacts of variants at the transcription level, into the gene discovery framework for a unique human disease, microcephaly-micromelia syndrome (MMS). MMS is an autosomal recessive condition described thus far in only a single First Nations population and causes intrauterine growth restriction, severe microcephaly, craniofacial anomalies, skeletal dysplasia, and neonatal lethality. Linkage analysis of affected families, including a very large pedigree, identified a single locus on Chromosome 21 linked to the disease (LOD > 9). Comprehensive genome sequencing did not reveal any pathogenic coding or canonical splicing mutations within the linkage region but identified several nonconserved noncoding variants. RNA-seq analysis detected aberrant splicing in DONSON due to one of these noncoding variants, showing a causative role for DONSON disruption in MMS. We show that DONSON is expressed in progenitor cells of embryonic human brain and other proliferating tissues, is co-expressed with components of the DNA replication machinery, and that Donson is essential for early embryonic development in mice as well, suggesting an essential conserved role for DONSON in the cell cycle. Our results demonstrate the utility of integrating transcriptomics into the study of human genetic disease when DNA sequencing alone is not sufficient to reveal the underlying pathogenic mutation.


Subject(s)
Cell Cycle Proteins/genetics , DNA Replication , Microcephaly/genetics , Microcephaly/pathology , Mutation , Nuclear Proteins/genetics , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Transcriptome , Animals , Chromosome Mapping , Female , Genetic Linkage , Genomic Instability , High-Throughput Nucleotide Sequencing , Humans , Male , Mice , Mice, Knockout , Microcephaly/etiology , Osteochondrodysplasias/etiology , Pedigree , Pregnancy , RNA Splicing , Sequence Analysis, RNA , Whole Genome Sequencing
8.
Hum Mol Genet ; 23(13): 3456-66, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24501276

ABSTRACT

Whereas many genes associated with intellectual disability (ID) encode synaptic proteins, transcriptional defects leading to ID are less well understood. We studied a large, consanguineous pedigree of Arab origin with seven members affected with ID and mild dysmorphic features. Homozygosity mapping and linkage analysis identified a candidate region on chromosome 17 with a maximum multipoint logarithm of odds score of 6.01. Targeted high-throughput sequencing of the exons in the candidate region identified a homozygous 4-bp deletion (c.169_172delCACT) in the METTL23 (methyltransferase like 23) gene, which is predicted to result in a frameshift and premature truncation (p.His57Valfs*11). Overexpressed METTL23 protein localized to both nucleus and cytoplasm, and physically interacted with GABPA (GA-binding protein transcription factor, alpha subunit). GABP, of which GABPA is a component, is known to regulate the expression of genes such as THPO (thrombopoietin) and ATP5B (ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide) and is implicated in a wide variety of important cellular functions. Overexpression of METTL23 resulted in increased transcriptional activity at the THPO promoter, whereas knockdown of METTL23 with siRNA resulted in decreased expression of ATP5B, thus revealing the importance of METTL23 as a regulator of GABPA function. The METTL23 mutation highlights a new transcriptional pathway underlying human intellectual function.


Subject(s)
DNA Modification Methylases/metabolism , GA-Binding Protein Transcription Factor/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , DNA Modification Methylases/genetics , Female , GA-Binding Protein Transcription Factor/genetics , Genotype , Humans , Immunoprecipitation , Male , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Polymorphism, Single Nucleotide/genetics , Protein Binding , RNA, Small Interfering , Thrombopoietin/genetics , Thrombopoietin/metabolism , Two-Hybrid System Techniques
9.
medRxiv ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38854127

ABSTRACT

The diagnosis and treatment of tumors often depends on molecular-genetic data. However, rapid and iterative access to molecular data is not currently feasible during surgery, complicating intraoperative diagnosis and precluding measurement of tumor cell burdens at surgical margins to guide resections. To address this gap, we developed Ultra-Rapid droplet digital PCR (UR-ddPCR), which can be completed in 15 minutes from tissue to result with an accuracy comparable to standard ddPCR. We demonstrate UR-ddPCR assays for the IDH1 R132H and BRAF V600E clonal mutations that are present in many low-grade gliomas and melanomas, respectively. We illustrate the clinical feasibility of UR-ddPCR by performing it intraoperatively for 13 glioma cases. We further combine UR-ddPCR measurements with UR-stimulated Raman histology intraoperatively to estimate tumor cell densities in addition to tumor cell percentages. We anticipate that UR-ddPCR, along with future refinements in assay instrumentation, will enable novel point-of-care diagnostics and the development of molecularly-guided surgeries that improve clinical outcomes.

10.
Biotechnol J ; 18(1): e2200323, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36317440

ABSTRACT

Numerous applications in molecular biology and genomics require characterization of mutant DNA molecules present at low levels within a larger sample of non-mutant DNA. This is often achieved either by selectively amplifying mutant DNA, or by sequencing all the DNA followed by computational identification of the mutant DNA. However, selective amplification is challenging for insertions and deletions (indels). Additionally, sequencing all the DNA in a sample may not be cost effective when only the presence of a mutation needs to be ascertained rather than its allelic fraction. The MutS protein evolved to detect DNA heteroduplexes in which the two DNA strands are mismatched. Prior methods have utilized MutS to enrich mutant DNA by hybridizing mutant to non-mutant DNA to create heteroduplexes. However, the purity of heteroduplex DNA these methods achieve is limited because they can only feasibly perform one or two enrichment cycles. We developed a MutS-magnetic bead system that enables rapid serial enrichment cycles. With six cycles, we achieve complete purification of heteroduplex indel DNA originally present at a 5% fraction and over 40-fold enrichment of heteroduplex DNA originally present at a 1% fraction. This system may enable novel approaches for enriching mutant DNA for targeted sequencing.


Subject(s)
Escherichia coli Proteins , Nucleic Acid Heteroduplexes , Nucleic Acid Heteroduplexes/genetics , Nucleic Acid Heteroduplexes/metabolism , MutS DNA Mismatch-Binding Protein/genetics , MutS DNA Mismatch-Binding Protein/metabolism , DNA/genetics , DNA/metabolism , Magnetic Phenomena
11.
bioRxiv ; 2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36824744

ABSTRACT

Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other genetic diseases1-4. Almost all of these mosaic mutations begin as nucleotide mismatches or damage in only one of the two strands of the DNA prior to becoming double-strand mutations if unrepaired or misrepaired5. However, current DNA sequencing technologies cannot resolve these initial single-strand events. Here, we developed a single-molecule, long-read sequencing method that achieves single-molecule fidelity for single-base substitutions when present in either one or both strands of the DNA. It also detects single-strand cytosine deamination events, a common type of DNA damage. We profiled 110 samples from diverse tissues, including from individuals with cancer-predisposition syndromes, and define the first single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumors deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples deficient in only polymerase proofreading. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. Since the double-strand DNA mutations interrogated by prior studies are only the endpoint of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable new studies of how mutations arise in a variety of contexts, especially in cancer and aging.

12.
Nat Genet ; 55(5): 871-879, 2023 05.
Article in English | MEDLINE | ID: mdl-37106072

ABSTRACT

Detecting mutations from single DNA molecules is crucial in many fields but challenging. Next-generation sequencing (NGS) affords tremendous throughput but cannot directly sequence double-stranded DNA molecules ('single duplexes') to discern the true mutations on both strands. Here we present Concatenating Original Duplex for Error Correction (CODEC), which confers single duplex resolution to NGS. CODEC affords 1,000-fold higher accuracy than NGS, using up to 100-fold fewer reads than duplex sequencing. CODEC revealed mutation frequencies of 2.72 × 10-8 in sperm of a 39-year-old individual, and somatic mutations acquired with age in blood cells. CODEC detected genome-wide, clonal hematopoiesis mutations from single DNA molecules, single mutated duplexes from tumor genomes and liquid biopsies, microsatellite instability with 10-fold greater sensitivity and mutational signatures, and specific tumor mutations with up to 100-fold fewer reads. CODEC enables more precise genetic testing and reveals biologically significant mutations, which are commonly obscured by NGS errors.


Subject(s)
Neoplasms , Semen , Male , Humans , Adult , Mutation/genetics , Neoplasms/genetics , Neoplasms/diagnosis , Sequence Analysis, DNA , DNA , High-Throughput Nucleotide Sequencing
14.
Mol Genet Genomic Med ; 8(10): e1405, 2020 10.
Article in English | MEDLINE | ID: mdl-32691986

ABSTRACT

BACKGROUND: Over half of children with rare genetic diseases remain undiagnosed despite maximal clinical evaluation and DNA-based genetic testing. As part of an Undiagnosed Diseases Program applying transcriptome (RNA) sequencing to identify the causes of these unsolved cases, we studied a child with severe infantile osteopetrosis leading to cranial nerve palsies, bone deformities, and bone marrow failure, for whom whole-genome sequencing was nondiagnostic. METHODS: We performed transcriptome (RNA) sequencing of whole blood followed by analysis of aberrant transcript isoforms and osteoclast functional studies. RESULTS: We identified a pathogenic deep intronic variant in CLCN7 creating an unexpected, frameshifting pseudoexon causing complete loss of function. Functional studies, including osteoclastogenesis and bone resorption assays, confirmed normal osteoclast differentiation but loss of osteoclast function. CONCLUSION: This is the first report of a pathogenic deep intronic variant in CLCN7, and our approach provides a model for systematic identification of noncoding variants causing osteopetrosis-a disease for which molecular-genetic diagnosis can be pivotal for potentially curative hematopoietic stem cell transplantation. Our work illustrates that cryptic splice variants may elude DNA-only sequencing and supports broad first-line use of transcriptome sequencing for children with undiagnosed diseases.


Subject(s)
Chloride Channels/genetics , Osteopetrosis/genetics , RNA-Seq , Child, Preschool , Chloride Channels/metabolism , Female , Genes, Recessive , Genetic Testing , Humans , Introns , Osteoclasts/metabolism , Osteoclasts/pathology , Osteopetrosis/diagnosis , RNA Splicing , Transcriptome
15.
Eur J Hum Genet ; 28(1): 64-75, 2020 01.
Article in English | MEDLINE | ID: mdl-30877278

ABSTRACT

DPH1 variants have been associated with an ultra-rare and severe neurodevelopmental disorder, mainly characterized by variable developmental delay, short stature, dysmorphic features, and sparse hair. We have identified four new patients (from two different families) carrying novel variants in DPH1, enriching the clinical delineation of the DPH1 syndrome. Using a diphtheria toxin ADP-ribosylation assay, we have analyzed the activity of seven identified variants and demonstrated compromised function for five of them [p.(Leu234Pro); p.(Ala411Argfs*91); p.(Leu164Pro); p.(Leu125Pro); and p.(Tyr112Cys)]. We have built a homology model of the human DPH1-DPH2 heterodimer and have performed molecular dynamics simulations to study the effect of these variants on the catalytic sites as well as on the interactions between subunits of the heterodimer. The results show correlation between loss of activity, reduced size of the opening to the catalytic site, and changes in the size of the catalytic site with clinical severity. This is the first report of functional tests of DPH1 variants associated with the DPH1 syndrome. We demonstrate that the in vitro assay for DPH1 protein activity, together with structural modeling, are useful tools for assessing the effect of the variants on DPH1 function and may be used for predicting patient outcomes and prognoses.


Subject(s)
Minor Histocompatibility Antigens/genetics , Mutation, Missense , Neurodevelopmental Disorders/genetics , Tumor Suppressor Proteins/genetics , Adult , Catalytic Domain , Child , Female , Humans , Infant , MCF-7 Cells , Male , Minor Histocompatibility Antigens/chemistry , Minor Histocompatibility Antigens/metabolism , Neurodevelopmental Disorders/pathology , Pedigree , Protein Multimerization , Syndrome , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism
16.
Eur J Hum Genet ; 28(1): 138, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31477843

ABSTRACT

Following the publication of the article, it was noted that the last column in Table 1, the total % should have read 5/8 (62.5) for the 'Epilepsy' row, and not 5.7 (71.4). This has now been amended in the HTML and PDF of the original article.

17.
Biomaterials ; 28(34): 5176-84, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17854886

ABSTRACT

The use of nanoparticles for targeted drug delivery is often facilitated by specific conjugation of functional targeting molecules to the nanoparticle surface. We compared different biotin-binding proteins (avidin, streptavidin, or neutravidin) as crosslinkers to conjugate proteins to biodegradable nanoparticles prepared from poly(lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG)-biotin polymers. Avidin gave the highest levels of overall protein conjugation, whereas neutravidin minimized protein non-specific binding to the polymer. The tetanus toxin C fragment (TTC), which is efficiently retrogradely transported in neurons and binds to neurons with high specificity and affinity, retained the ability to bind to neuroblastoma cells following amine group modifications. TTC was conjugated to nanoparticles using neutravidin, and the resulting nanoparticles were shown to selectively target neuroblastoma cells in vitro. TTC-conjugated nanoparticles have the potential to serve as drug delivery vehicles targeted to the central nervous system.


Subject(s)
Drug Delivery Systems , Nanoparticles/chemistry , Neurons/metabolism , Tetanus Toxin/chemistry , Biocompatible Materials/chemistry , Biotin/chemistry , Biotinylation , Cell Culture Techniques/methods , Cell Line, Tumor , Central Nervous System/metabolism , Humans , Magnetic Resonance Spectroscopy , Neuroblastoma/metabolism , Polyethylene Glycols/chemistry , Polyglactin 910/chemistry , Polymers/chemistry
18.
Elife ; 52016 Feb 22.
Article in English | MEDLINE | ID: mdl-26901440

ABSTRACT

Whether somatic mutations contribute functional diversity to brain cells is a long-standing question. Single-neuron genomics enables direct measurement of somatic mutation rates in human brain and promises to answer this question. A recent study (Upton et al., 2015) reported high rates of somatic LINE-1 element (L1) retrotransposition in the hippocampus and cerebral cortex that would have major implications for normal brain function, and suggested that these events preferentially impact genes important for neuronal function. We identify aspects of the single-cell sequencing approach, bioinformatic analysis, and validation methods that led to thousands of artifacts being interpreted as somatic mutation events. Our reanalysis supports a mutation frequency of approximately 0.2 events per cell, which is about fifty-fold lower than reported, confirming that L1 elements mobilize in some human neurons but indicating that L1 mosaicism is not ubiquitous. Through consideration of the challenges identified, we provide a foundation and framework for designing single-cell genomics studies.


Subject(s)
Brain/physiology , Long Interspersed Nucleotide Elements , Mutation Rate , Neurons/physiology , Single-Cell Analysis/methods , Computational Biology , Genome, Human , Humans , United States
19.
Neuron ; 85(1): 49-59, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25569347

ABSTRACT

Somatic mutations occur during brain development and are increasingly implicated as a cause of neurogenetic disease. However, the patterns in which somatic mutations distribute in the human brain are unknown. We used high-coverage whole-genome sequencing of single neurons from a normal individual to identify spontaneous somatic mutations as clonal marks to track cell lineages in human brain. Somatic mutation analyses in >30 locations throughout the nervous system identified multiple lineages and sublineages of cells marked by different LINE-1 (L1) retrotransposition events and subsequent mutation of poly-A microsatellites within L1. One clone contained thousands of cells limited to the left middle frontal gyrus, whereas a second distinct clone contained millions of cells distributed over the entire left hemisphere. These patterns mirror known somatic mutation disorders of brain development and suggest that focally distributed mutations are also prevalent in normal brains. Single-cell analysis of somatic mutation enables tracing of cell lineage clones in human brain.


Subject(s)
Cell Lineage/genetics , Cerebral Cortex/cytology , Long Interspersed Nucleotide Elements/genetics , Neurons/cytology , Retroelements/genetics , Adolescent , Brain/cytology , Brain/metabolism , Cell Movement , Cerebral Cortex/metabolism , Clone Cells/cytology , Clone Cells/metabolism , DNA Mutational Analysis , Humans , Male , Microsatellite Repeats/genetics , Mutation/genetics , Neurons/metabolism , Poly A/genetics , Polymerase Chain Reaction , Sequence Analysis, DNA
20.
Science ; 350(6256): 94-98, 2015 Oct 02.
Article in English | MEDLINE | ID: mdl-26430121

ABSTRACT

Neurons live for decades in a postmitotic state, their genomes susceptible to DNA damage. Here we survey the landscape of somatic single-nucleotide variants (SNVs) in the human brain. We identified thousands of somatic SNVs by single-cell sequencing of 36 neurons from the cerebral cortex of three normal individuals. Unlike germline and cancer SNVs, which are often caused by errors in DNA replication, neuronal mutations appear to reflect damage during active transcription. Somatic mutations create nested lineage trees, allowing them to be dated relative to developmental landmarks and revealing a polyclonal architecture of the human cerebral cortex. Thus, somatic mutations in the brain represent a durable and ongoing record of neuronal life history, from development through postmitotic function.


Subject(s)
Cerebral Cortex/cytology , Cerebral Cortex/growth & development , Mutation , Neurons/cytology , Neurons/physiology , Polymorphism, Single Nucleotide , Transcription, Genetic , Adolescent , Cell Lineage , DNA Mutational Analysis , DNA Replication/genetics , Female , Genetic Loci , Humans , Male , Mitosis/genetics , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL