Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Nature ; 441(7090): 239-43, 2006 May 11.
Article in English | MEDLINE | ID: mdl-16625206

ABSTRACT

A common viral immune evasion strategy involves mutating viral surface proteins in order to evade host neutralizing antibodies. Such immune evasion tactics have not previously been intentionally applied to the development of novel viral gene delivery vectors that overcome the critical problem of anti-vector immunity. Recombinant, replication-incompetent adenovirus serotype 5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 and other pathogens have proved highly immunogenic in preclinical studies but will probably be limited by the high prevalence of pre-existing anti-Ad5 immunity in human populations, particularly in the developing world. Here we show that rAd5 vectors can be engineered to circumvent anti-Ad5 immunity. We constructed novel chimaeric rAd5 vectors in which the seven short hypervariable regions (HVRs) on the surface of the Ad5 hexon protein were replaced with the corresponding HVRs from the rare adenovirus serotype Ad48. These HVR-chimaeric rAd5 vectors were produced at high titres and were stable through serial passages in vitro. HVR-chimaeric rAd5 vectors expressing simian immunodeficiency virus Gag proved comparably immunogenic to parental rAd5 vectors in naive mice and rhesus monkeys. In the presence of high levels of pre-existing anti-Ad5 immunity, the immunogenicity of HVR-chimaeric rAd5 vectors was not detectably suppressed, whereas the immunogenicity of parental rAd5 vectors was abrogated. These data demonstrate that functionally relevant Ad5-specific neutralizing antibodies are focused on epitopes located within the hexon HVRs. Moreover, these studies show that recombinant viral vectors can be engineered to circumvent pre-existing anti-vector immunity by removing key neutralizing epitopes on the surface of viral capsid proteins. Such chimaeric viral vectors may have important practical implications for vaccination and gene therapy.


Subject(s)
Adenoviridae/genetics , Adenoviridae/immunology , Capsid Proteins/genetics , Capsid Proteins/immunology , Genetic Engineering , Genetic Vectors/genetics , Genetic Vectors/immunology , Adenoviridae/classification , Adenoviridae/physiology , Animals , CD8-Positive T-Lymphocytes/immunology , DNA, Recombinant/genetics , Genetic Therapy , Macaca mulatta/immunology , Mice , Mice, Inbred C57BL , Neutralization Tests , Vaccines
2.
J Virol ; 82(10): 4844-52, 2008 May.
Article in English | MEDLINE | ID: mdl-18337575

ABSTRACT

Recombinant adenovirus serotype 5 (rAd5) vaccine vectors for human immunodeficiency virus type 1 (HIV-1) and other pathogens have been shown to elicit antigen-specific cellular immune responses. Rare serotype rAd vectors have also been constructed to circumvent preexisting anti-Ad5 immunity and to facilitate the development of novel heterologous rAd prime-boost regimens. Here we show that rAd5, rAd26, and rAd48 vectors elicit qualitatively distinct phenotypes of cellular immune responses in rhesus monkeys and can be combined as potent heterologous prime-boost vaccine regimens. While rAd5-Gag induced primarily gamma interferon-positive (IFN-gamma(+)) and IFN-gamma(+)/tumor necrosis factor alpha(+) (TNF-alpha(+)) T-lymphocyte responses, rAd26-Gag and rAd48-Gag induced higher proportions of interleukin-2(+) (IL-2(+)) and polyfunctional IFN-gamma(+)/TNF-alpha(+)/IL-2(+) T-lymphocyte responses. Priming with the rare serotype rAd vectors proved remarkably effective for subsequent boosting with rAd5 vectors. These data demonstrate that the rare serotype rAd vectors elicited T-lymphocyte responses that were phenotypically distinct from those elicited by rAd5 vectors and suggest the functional relevance of polyfunctional CD8(+) and CD4(+) T-lymphocyte responses. Moreover, qualitative differences in cellular immune responses may prove critical in determining the overall potency of heterologous rAd prime-boost regimens.


Subject(s)
Adenoviridae/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Genetic Vectors/immunology , SAIDS Vaccines/immunology , Animals , Gene Products, gag/genetics , Gene Products, gag/immunology , Immunization/methods , Immunization, Secondary/methods , Interferon-gamma/biosynthesis , Interleukin-2/biosynthesis , Macaca mulatta , Tumor Necrosis Factor-alpha/biosynthesis
3.
J Virol ; 82(14): 6829-37, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18448519

ABSTRACT

The development of a subunit vaccine for smallpox represents a potential strategy to avoid the safety concerns associated with replication-competent vaccinia virus. Preclinical studies to date with subunit smallpox vaccine candidates, however, have been limited by incomplete information regarding protective antigens and the requirement for multiple boost immunizations to afford protective immunity. Here we explore the protective efficacy of replication-incompetent, recombinant adenovirus serotype 35 (rAd35) vectors expressing the vaccinia virus intracellular mature virion (IMV) antigens A27L and L1R and extracellular enveloped virion (EEV) antigens A33R and B5R in a murine vaccinia virus challenge model. A single immunization with the rAd35-L1R vector effectively protected mice against a lethal systemic vaccinia virus challenge. The rAd35-L1R vector also proved more efficacious than the combination of four rAd35 vectors expressing A27L, L1R, A33R, and B5R. Moreover, serum containing L1R-specific neutralizing antibodies afforded postexposure prophylaxis after systemic vaccinia virus infection. In contrast, the combination of rAd35-L1R and rAd35-B5R vectors was required to protect mice against a lethal intranasal vaccinia virus challenge, suggesting that both IMV- and EEV-specific immune responses are important following intranasal infection. Taken together, these data demonstrate that different protective antigens are required based on the route of vaccinia virus challenge. These studies also suggest that rAd vectors warrant further assessment as candidate subunit smallpox vaccines.


Subject(s)
Smallpox Vaccine/immunology , Smallpox/immunology , Smallpox/prevention & control , Vaccinia virus/immunology , Adenoviridae/genetics , Animals , Antibodies, Viral/blood , Antibodies, Viral/therapeutic use , Body Weight , Chemoprevention/methods , Ectromelia virus/genetics , Enzyme-Linked Immunosorbent Assay , Genetic Vectors , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice , Mice, Inbred BALB C , Neutralization Tests , Smallpox Vaccine/genetics , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Proteins/genetics , Viral Proteins/immunology
4.
Vaccine ; 27(10): 1549-56, 2009 Mar 04.
Article in English | MEDLINE | ID: mdl-19168105

ABSTRACT

Modified Vaccinia Ankara (MVA) is a replication-defective strain of vaccinia virus (VV) that is being investigated in humans as an alternative vaccine against smallpox. Understanding the parameters of a MVA vaccine regimen that can effectively enhance protective immunity will be important for clinical development. The present studies utilize cohorts of rhesus monkeys immunized with recombinant MVA (rMVA) or recombinant VV (rVV) vaccine vectors to investigate the magnitude, breadth, and durability of anti-VV immunity elicited by a single or multi-dose vaccine regimen. These data demonstrate that a single immunization with rMVA elicits weaker cellular and humoral immunity compared to a single inoculation with rVV. However, vaccine-elicited antibody responses, but not T cell responses, are significantly enhanced with repeated immunizations of rMVA. Importantly, only monkeys receiving up to four inoculations with rMVA generated neutralizing antibody (NAb) responses that were comparable in magnitude and durability to those elicited in monkeys receiving two inoculations with rVV. These data also show that the breadth of antibody responses against protein antigens associated with two antigenically distinct forms of infectious VV are similar in rMVA- and rVV-immunized monkeys. Together, these studies suggest that a multi-dose vaccine regimen utilizing up to four inoculations of MVA generates robust and durable antibody-mediated immunity comparable to that elicited by replication-competent VV.


Subject(s)
Smallpox Vaccine/administration & dosage , Vaccinia virus/immunology , Viral Vaccines/administration & dosage , AIDS Vaccines/administration & dosage , AIDS Vaccines/genetics , AIDS Vaccines/immunology , Animals , Antibodies, Viral/biosynthesis , Antigens, Viral/genetics , Cross Reactions , Defective Viruses/genetics , Defective Viruses/immunology , Fowlpox virus/genetics , Fowlpox virus/immunology , Genetic Vectors , Humans , Immunity, Cellular , Immunization, Secondary , Macaca mulatta , Neutralization Tests , Smallpox Vaccine/genetics , Smallpox Vaccine/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccinia virus/genetics , Viral Vaccines/genetics , Viral Vaccines/immunology
5.
J Virol ; 81(9): 4654-63, 2007 May.
Article in English | MEDLINE | ID: mdl-17329340

ABSTRACT

Recombinant adenovirus serotype 5 (rAd5) vector-based vaccines are currently being developed for both human immunodeficiency virus type 1 and other pathogens. The potential limitations associated with rAd5 vectors, however, have led to the construction of novel rAd vectors derived from rare Ad serotypes. Several rare serotype rAd vectors have already been described, but a detailed comparison of multiple rAd vectors from subgroups B and D has not previously been reported. Such a comparison is critical for selecting optimal rAd vectors for advancement into clinical trials. Here we describe the construction of three novel rAd vector systems from Ad26, Ad48, and Ad50. We report comparative seroprevalence and immunogenicity studies involving rAd11, rAd35, and rAd50 vectors from subgroup B; rAd26, rAd48, and rAd49 vectors from subgroup D; and rAd5 vectors from subgroup C. All six rAd vectors from subgroups B and D exhibited low seroprevalence in a cohort of 200 individuals from sub-Saharan Africa, and they elicited Gag-specific cellular immune responses in mice both with and without preexisting anti-Ad5 immunity. The rAd vectors from subgroup D were also evaluated using rhesus monkeys and were shown to be immunogenic after a single injection. The rAd26 vectors proved the most immunogenic among the rare serotype rAd vectors studied, although all rare serotype rAd vectors were still less potent than rAd5 vectors in the absence of anti-Ad5 immunity. These studies substantially expand the portfolio of rare serotype rAd vectors that may prove useful as vaccine vectors for the developing world.


Subject(s)
Adenoviridae Infections/epidemiology , Adenoviridae/genetics , Genetic Vectors/genetics , Vaccines, Synthetic/genetics , Viral Vaccines/genetics , Adenoviridae Infections/blood , Africa South of the Sahara/epidemiology , Animals , Base Sequence , Cloning, Molecular , DNA Primers , Enzyme-Linked Immunosorbent Assay , Genetic Vectors/immunology , Humans , Macaca mulatta , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Neutralization Tests , Sequence Analysis, DNA , Seroepidemiologic Studies , Serotyping
6.
J Virol ; 80(24): 11991-7, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17005652

ABSTRACT

Generating broad cellular immune responses against a diversity of viral epitopes is a major goal of current vaccine strategies for human immunodeficiency virus type 1 (HIV-1) and other pathogens. Virus-specific CD8(+) T-lymphocyte responses, however, are often highly focused on a very limited number of immunodominant epitopes. For an HIV-1 vaccine, the breadth of CD8(+) T-lymphocyte responses may prove to be critical as a result of the need to cover a wide diversity of viral isolates in the population and to limit viral escape from dominant epitope-specific T lymphocytes. Here we show that epitope modification strategies can alter CD8(+) T-lymphocyte epitope immunodominance hierarchies elicited by a DNA vaccine in mice. Mice immunized with a DNA vaccine expressing simian immunodeficiency virus Gag lacking the dominant D(b)-restricted AL11 epitope generated a marked and durable augmentation of responses specific for the subdominant D(b)-restricted KV9 epitope. Moreover, anatomic separation strategies and heterologous prime-boost regimens generated codominant responses against both epitopes. These data demonstrate that dominant epitopes can dramatically suppress the immunogenicity of subdominant epitopes in the context of gene-based vaccines and that epitope modification strategies can be utilized to enhance responses to subdominant epitopes.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Gene Products, gag/immunology , Immunity, Cellular/immunology , Immunodominant Epitopes/immunology , SAIDS Vaccines/immunology , Simian Immunodeficiency Virus/immunology , Animals , Epitopes, T-Lymphocyte/genetics , Female , Immunity, Cellular/genetics , Immunodominant Epitopes/genetics , Immunoenzyme Techniques , Mice , Mice, Inbred C57BL , SAIDS Vaccines/genetics
7.
J Virol ; 80(24): 12009-16, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17035318

ABSTRACT

The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations has led to the development of recombinant adenovirus (rAd) vectors derived from rare Ad serotypes as vaccine candidates for human immunodeficiency virus type 1 and other pathogens. Vaccine vectors have been constructed from Ad subgroup B, including rAd11 and rAd35, as well as from Ad subgroup D, including rAd49. However, the optimal combination of vectors for heterologous rAd prime-boost vaccine regimens and the extent of cross-reactive vector-specific neutralizing antibodies (NAbs) remain poorly defined. We have shown previously that the closely related vectors rAd11 and rAd35 elicited low levels of cross-reactive NAbs. Here we show that these cross-reactive NAbs correlated with substantial sequence homology in the hexon hypervariable regions (HVRs) and suppressed the immunogenicity of heterologous rAd prime-boost regimens. In contrast, vectors with lower hexon HVR homology, such as rAd35 and rAd49, did not elicit detectable cross-reactive vector-specific NAbs. Consistent with these findings, rAd35-rAd49 vaccine regimens proved more immunogenic than both rAd35-rAd5 and rAd35-rAd11 regimens in mice with anti-Ad5 immunity. These data suggest that optimal heterologous rAd prime-boost regimens should include two vectors that are both rare in human populations to circumvent preexisting antivector immunity as well as sufficiently immunologically distinct to avoid cross-reactive antivector immunity.


Subject(s)
Adenoviridae/immunology , Cross Reactions/immunology , Genetic Vectors/immunology , Vaccines, Synthetic/immunology , Adenoviridae/genetics , Animals , Antibodies/immunology , Antigens, Viral/genetics , Capsid Proteins/genetics , Immunoenzyme Techniques , Mice , Mice, Inbred C57BL , Neutralization Tests
8.
J Virol ; 79(15): 9694-701, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16014931

ABSTRACT

The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations will likely limit the immunogenicity and clinical utility of recombinant Ad5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 and other pathogens. A potential solution to this problem is to utilize rAd vaccine vectors derived from rare Ad serotypes such as Ad35 and Ad11. We have previously reported that rAd35 vectors were immunogenic in the presence of anti-Ad5 immunity, but the immunogenicity of heterologous rAd prime-boost regimens and the extent that cross-reactive anti-vector immunity may limit this approach have not been fully explored. Here we assess the immunogenicity of heterologous vaccine regimens involving rAd5, rAd35, and novel rAd11 vectors expressing simian immunodeficiency virus Gag in mice both with and without anti-Ad5 immunity. Heterologous rAd prime-boost regimens proved significantly more immunogenic than homologous regimens, as expected. Importantly, all regimens that included rAd5 were markedly suppressed by anti-Ad5 immunity. In contrast, rAd35-rAd11 and rAd11-rAd35 regimens elicited high-frequency immune responses both in the presence and in the absence of anti-Ad5 immunity, although we also detected clear cross-reactive Ad35/Ad11-specific humoral and cellular immune responses. Nevertheless, these data suggest the potential utility of heterologous rAd prime-boost vaccine regimens using vectors derived from rare human Ad serotypes.


Subject(s)
Adenoviruses, Human/immunology , Genetic Vectors/immunology , Reassortant Viruses/immunology , Viral Vaccines/immunology , Animals , Antibody Formation , Cross Reactions , Drug Evaluation, Preclinical , Gene Products, gag/genetics , Genetic Therapy , Immunity, Cellular , Immunization, Secondary , Injections, Intramuscular , Mice , Mice, Inbred C57BL , Simian Immunodeficiency Virus/genetics , Vaccines, Synthetic/immunology , Viral Vaccines/administration & dosage
9.
J Virol ; 79(22): 14161-8, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16254351

ABSTRACT

Preexisting immunity to adenovirus serotype 5 (Ad5) has been shown to suppress the immunogenicity of recombinant Ad5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 (HIV-1) in both preclinical studies and clinical trials. A potential solution to this problem is to utilize rAd vectors derived from rare Ad serotypes, such as Ad35. However, rAd35 vectors have appeared less immunogenic than rAd5 vectors in preclinical studies to date. In this study, we explore the hypothesis that the differences in immunogenicity between rAd5 and rAd35 vectors may be due in part to differences between the fiber proteins of these viruses. We constructed capsid chimeric rAd35 vectors containing the Ad5 fiber knob (rAd35k5) and compared the immunogenicities of rAd5, rAd35k5, and rAd35 vectors expressing simian immunodeficiency virus Gag and HIV-1 Env in mice and rhesus monkeys. In vitro studies demonstrated that rAd35k5 vectors utilized the Ad5 receptor CAR rather than the Ad35 receptor CD46. In vivo studies showed that rAd35k5 vectors were more immunogenic than rAd35 vectors in both mice and rhesus monkeys. These data suggest that the Ad5 fiber knob contributes substantially to the immunogenicity of rAd vectors. Moreover, these studies demonstrate that capsid chimeric rAd vectors can be constructed to combine beneficial immunologic and serologic properties of different Ad serotypes.


Subject(s)
Adenoviridae Infections/immunology , Adenoviridae/immunology , Capsid Proteins/genetics , Viral Vaccines , Adenoviridae/classification , Adenoviridae/genetics , Animals , Epitopes/chemistry , Epitopes/immunology , Immunization , Macaca mulatta , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Serotyping , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL