Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 59(52): 23414-23436, 2020 12 21.
Article in English | MEDLINE | ID: mdl-31553509

ABSTRACT

This two-part Review examines how automation has contributed to different aspects of discovery in the chemical sciences. In this second part, we reflect on a selection of exemplary studies. It is increasingly important to articulate what the role of automation and computation has been in the scientific process and how that has or has not accelerated discovery. One can argue that even the best automated systems have yet to "discover" despite being incredibly useful as laboratory assistants. We must carefully consider how they have been and can be applied to future problems of chemical discovery in order to effectively design and interact with future autonomous platforms. The majority of this Review defines a large set of open research directions, including improving our ability to work with complex data, build empirical models, automate both physical and computational experiments for validation, select experiments, and evaluate whether we are making progress towards the ultimate goal of autonomous discovery. Addressing these practical and methodological challenges will greatly advance the extent to which autonomous systems can make meaningful discoveries.

2.
Angew Chem Int Ed Engl ; 59(51): 22858-22893, 2020 12 14.
Article in English | MEDLINE | ID: mdl-31553511

ABSTRACT

This two-part Review examines how automation has contributed to different aspects of discovery in the chemical sciences. In this first part, we describe a classification for discoveries of physical matter (molecules, materials, devices), processes, and models and how they are unified as search problems. We then introduce a set of questions and considerations relevant to assessing the extent of autonomy. Finally, we describe many case studies of discoveries accelerated by or resulting from computer assistance and automation from the domains of synthetic chemistry, drug discovery, inorganic chemistry, and materials science. These illustrate how rapid advancements in hardware automation and machine learning continue to transform the nature of experimentation and modeling. Part two reflects on these case studies and identifies a set of open challenges for the field.

3.
Chem Sci ; 14(33): 8798-8809, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37621435

ABSTRACT

We present an automated droplet reactor platform possessing parallel reactor channels and a scheduling algorithm that orchestrates all of the parallel hardware operations and ensures droplet integrity as well as overall efficiency. We design and incorporate all of the necessary hardware and software to enable the platform to be used to study both thermal and photochemical reactions. We incorporate a Bayesian optimization algorithm into the control software to enable reaction optimization over both categorical and continuous variables. We demonstrate the capabilities of both the preliminary single-channel and parallelized versions of the platform using a series of model thermal and photochemical reactions. We conduct a series of reaction optimization campaigns and demonstrate rapid acquisition of the data necessary to determine reaction kinetics. The platform is flexible in terms of use case: it can be used either to investigate reaction kinetics or to perform reaction optimization over a wide range of chemical domains.

4.
ChemSusChem ; 15(14): e202200333, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35470567

ABSTRACT

Automation and microfluidic tools potentially enable efficient, fast, and focused reaction development of complex chemistries, while minimizing resource- and material consumption. The introduction of automation-assisted workflows will contribute to the more sustainable development and scale-up of new and improved catalytic technologies. Herein, the application of automation and microfluidics to the development of a complex asymmetric hydrogenation reaction is described. Screening and optimization experiments were performed using an automated microfluidic platform, which enabled a drastic reduction in the material consumption compared to conventional laboratory practices. A suitable catalytic system was identified from a library of RuII -diamino precatalysts. In situ precatalyst activation was studied with 1 H/31 P nuclear magnetic resonance (NMR), and the reaction was scaled up to multigram quantities in a batch autoclave. These reactions were monitored using an automated liquid-phase sampling system. Ultimately, in less than a week of total experimental time, multigram quantities of the target enantiopure alcohol product were provided by this automation-assisted approach.


Subject(s)
Alcohols , Microfluidics , Alcohols/chemistry , Automation , Catalysis , Hydrogenation
SELECTION OF CITATIONS
SEARCH DETAIL