Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters

Publication year range
1.
Ann Surg ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771951

ABSTRACT

OBJECTIVE: We aimed to assess the levels of MDM2-DNA within extracellular vesicles (EVs) isolated from the serum of retroperitoneal liposarcoma (RLS) patients versus healthy donors, as well as within the same patients at the time of surgery versus post-operative surveillance visits. To determine whether EV-MDM2 may serve as a possible first-ever biomarker of liposarcoma recurrence. BACKGROUND: A hallmark of well-differentiated and de-differentiated (WD/DD) retroperitoneal liposarcoma is elevated MDM2 due to genome amplification, with recurrence rates of >50% even after complete resection. Imaging technologies frequently cannot resolve recurrent WD/DD-RLS versus postoperative scarring. Early detection of recurrent lesions, for which biomarkers are lacking, would guide surveillance and treatment decisions. METHODS: WD/DD-RLS serum samples were collected both at the time of surgery and during follow-up visits from 42 patients, along with sera from healthy donors (n=14). EVs were isolated, DNA purified and MDM2-DNA levels determined through q-PCR analysis. Non-parametric tests were employed to compare EV-MDM2 DNA levels from patients versus control group, as well as the time of surgery versus post-surgery conditions. RESULTS: EV-MDM2 levels were significantly higher in WD/DD-RLS than controls (P= 0.00085). Moreover, EV-MDM2 levels were remarkably decreased in WD/DD-RLS patients after resection (P=0.00036), reaching values comparable to control group (P=0.124). During post-operative surveillance, significant increases of EV-MDM2 was observed in some patients, correlating with CT scan evidence of recurrent or persistent post-resection disease. CONCLUSIONS: Serum EV-MDM2 may serve as a potential biomarker of early recurrent or post-operatively persistent WD/DD-RLS, a disease currently lacking such determinants.

2.
Brain Behav Immun ; 119: 333-350, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38561095

ABSTRACT

Neonatal sepsis remains one of the leading causes of mortality in newborns. Several brainstem-regulated physiological processes undergo disruption during neonatal sepsis. Mechanistic knowledge gaps exist at the interplay between metabolism and immune activation to brainstem neural circuits and pertinent physiological functions in neonates. To delineate this association, we induced systemic inflammation either by TLR4 (LPS) or TLR1/2 (PAM3CSK4) ligand administration in postnatal day 5 mice (PD5). Our findings show that LPS and PAM3CSK4 evoke substantial changes in respiration and metabolism. Physiological trade-offs led to hypometabolic-hypothermic responses due to LPS, but not PAM3CSK4, whereas to both TLR ligands blunted respiratory chemoreflexes. Neuroinflammatory pathways modulation in brainstem showed more robust effects in LPS than PAM3CSK4. Brainstem neurons, microglia, and astrocyte gene expression analyses showed unique responses to TLR ligands. PAM3CSK4 did not significantly modulate gene expression changes in GLAST-1 positive brainstem astrocytes. PD5 pups receiving PAM3CSK4 failed to maintain a prolonged metabolic state repression, which correlated to enhanced gasping latency and impaired autoresuscitation during anoxic chemoreflex challenges. In contrast, LPS administered pups showed no significant changes in anoxic chemoreflex. Electrophysiological studies from brainstem slices prepared from pups exposed to either TLR4 or PAM3CSK4 showed compromised transmission between preBötzinger complex and Hypoglossal as an exclusive response to the TLR1/2 ligand. Spatial gene expression analysis demonstrated a region-specific modulation of PAM3CSK4 within the raphe nucleus relative to other anatomical sites evaluated. Our findings suggest that metabolic changes due to inflammation might be a crucial tolerance mechanism for neonatal sepsis preserving neural control of breathing.


Subject(s)
Animals, Newborn , Brain Stem , Lipopolysaccharides , Neonatal Sepsis , Toll-Like Receptor 1 , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Animals , Mice , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/pharmacology , Toll-Like Receptor 2/metabolism , Neonatal Sepsis/metabolism , Brain Stem/metabolism , Toll-Like Receptor 1/metabolism , Lipopeptides/pharmacology , Respiration/drug effects , Mice, Inbred C57BL , Neurons/metabolism , Astrocytes/metabolism , Male , Ligands , Microglia/metabolism , Female , Inflammation/metabolism
3.
Proc Natl Acad Sci U S A ; 117(22): 12332-12340, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32424097

ABSTRACT

Double knockout of the two miR-15/16 loci in mouse resulted in the development of acute myeloid leukemia (AML). This result suggested that, at least, a fraction of human AMLs could be due to a similar mechanism. We analyzed the role of the two miR-15/16 clusters in 93 myelodysplastic syndrome (MDS) patients divided in three subgroups: patients with MDS, patients with MDS before transforming into AML (MDS-T), and patients with AML evolving from MDS (MDS-AML). Then, we tested 139 AML cases and 14 different AML cell lines by assessing microRNA (miRNA) expression, target protein expression, genetic loss, and silencing. MDS-T and MDS-AML patients show a reduction of the expression of miR-15a/-15b/-16 compared to MDS patients. Each miRNA can significantly predict MDS and MDS-T groups. Then, 79% of primary AMLs show a reduced expression of miR-15a and/or miR-15b. The expression of miR-15a/-15b/-16 significantly stratified AML patients in two prognostic classes. Furthermore, 40% of AML cell lines showed a combined loss of the expression of miR-15a/-15b and overexpression of their direct/indirect targets. As potential mechanisms involved in the silencing of the two miR-15/16 loci, we identified a genetic loss of miR-15a and miR-15b and silencing of these two loci by methylation. We identified a potential driver oncogenic role in the loss of expression of both miR-15/16 clusters in the progression of MDS into AML and in AML pathogenesis. The stratification of AML patients, based on miR-15/16 expression, can lead to targeted and combination therapies for the treatment of this incurable disease.


Subject(s)
Leukemia, Myeloid, Acute/genetics , MicroRNAs/genetics , Aged , Aged, 80 and over , Cohort Studies , Disease Progression , Female , Gene Expression Regulation, Leukemic , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , MicroRNAs/metabolism , Middle Aged
4.
Int J Mol Sci ; 24(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37685851

ABSTRACT

Among patients with triple-negative breast cancer (TNBC), several studies have suggested that deregulated microRNA (miRNA) expression may be associated with a more aggressive phenotype. Although tumor molecular signatures may be race- and/or ethnicity-specific, there is limited information on the molecular profiles in women with TNBC of Hispanic and Latin American ancestry. We simultaneously profiled TNBC biopsies for the genome-wide copy number and miRNA global expression from 28 Latina women and identified a panel of 28 miRNAs associated with copy number alterations (CNAs). Four selected miRNAs (miR-141-3p, miR-150-5p, miR-182-5p, and miR-661) were validated in a subset of tumor and adjacent non-tumor tissue samples, with miR-182-5p being the most discriminatory among tissue groups (AUC value > 0.8). MiR-141-3p up-regulation was associated with increased cancer recurrence; miR-661 down-regulation with larger tumor size; and down-regulation of miR-150-5p with larger tumor size, high p53 expression, increased cancer recurrence, presence of distant metastasis, and deceased status. This study reinforces the importance of integration analysis of CNAs and miRNAs in TNBC, allowing for the identification of interactions among molecular mechanisms. Additionally, this study emphasizes the significance of considering the patients ancestral background when examining TNBC, as it can influence the relationship between intrinsic tumor molecular characteristics and clinical manifestations of the disease.


Subject(s)
MicroRNAs , Triple Negative Breast Neoplasms , Female , Humans , Triple Negative Breast Neoplasms/genetics , Genomics , Hispanic or Latino/genetics , Ethnicity , MicroRNAs/genetics
5.
Kidney Int ; 102(4): 845-865, 2022 10.
Article in English | MEDLINE | ID: mdl-35788359

ABSTRACT

The immune pathways that define treatment response and non-response in lupus nephritis (LN) are unknown. To characterize these intra-kidney pathways, transcriptomic analysis was done on protocol kidney biopsies obtained at flare (initial biopsy (Bx1)) and after treatment (second biopsy (Bx2)) in 58 patients with LN. Glomeruli and tubulointerstitial compartments were isolated using laser microdissection. RNA was extracted and analyzed by nanostring technology with transcript expression from clinically complete responders, partial responders and non-responders compared at Bx1 and Bx2 and to the healthy controls. Top transcripts that differentiate clinically complete responders from non-responders were validated at the protein level by confocal microscopy and urine ELISA. At Bx1, cluster analysis determined that glomerular integrin, neutrophil, chemokines/cytokines and tubulointerstitial chemokines, T cell and leukocyte adhesion genes were able to differentiate non-responders from clinically complete responders. At Bx2, glomerular monocyte, extracellular matrix, and interferon, and tubulointerstitial interferon, complement, and T cell transcripts differentiated non-responders from clinically complete responders. Protein analysis identified several protein products of overexpressed glomerular and tubulointerstitial transcripts at LN flare, recapitulating top transcript findings. Urine complement component 5a and fibronectin-1 protein levels reflected complement and fibronectin expression at flare and after treatment. Thus, transcript analysis of serial LN kidney biopsies demonstrated how gene expression in the kidney changes with clinically successful and unsuccessful therapy. Hence, these insights into the molecular landscape of response and non-response may help align LN management with the pathogenesis of kidney injury.


Subject(s)
Lupus Nephritis , Biomarkers/urine , Biopsy , Complement C5a , Complement System Proteins , Fibronectins/genetics , Humans , Integrins , Interferons , Kidney/pathology , Lupus Nephritis/diagnosis , Lupus Nephritis/drug therapy , Lupus Nephritis/genetics , RNA
6.
Ergonomics ; 65(5): 762-774, 2022 May.
Article in English | MEDLINE | ID: mdl-34617498

ABSTRACT

Although professional bus drivers are required to perform their task while adopting a prolonged constrained sitting posture, existence of possible effects in terms of postural strategies has been scarcely investigated under actual working conditions. This study aimed to characterise modifications of trunk sway in 14 professional bus drivers during regular shifts performed on non-urban routes using a pressure-sensitive mat placed on the seat. Centre-of-pressure (COP) time series were extracted from body-seat pressure data to calculate sway parameters (i.e. sway area, COP path length, COP displacements and velocities). Results show generalised increase in trunk sway as driving progresses, which becomes statistically significant after approximately 70-100 minutes of continuous driving. This may indicate the adoption of specific strategies to cope with discomfort onset or a fatigue-induced alteration of postural features. Trunk sway monitoring of bus drivers may be useful in detecting postural behaviours potentially associated with deteriorating performance and discomfort onset. Practitioner summary: Professional bus drivers operate in sitting position for prolonged time. Such constrained posture may induce discomfort and fatigue. We investigated trunk sway during actual shifts using pressure-sensitive mats. Significant increase of sway was detected after 70 min of continuous driving. Body-seat pressure data could be used as discomfort and fatigue markers. Abbreviations: ANOVA-RM: analysis of variance with repeated measures; AP: antero-posterior; COP: center of pressure; EC: ellipse's centroid; ML: medio-lateral; SA: sway area; SP: sway path.


Subject(s)
Automobile Driving , Postural Balance , Humans , Posture , Torso
7.
J Neurophysiol ; 125(4): 1164-1179, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33502943

ABSTRACT

Modern neurophysiology research requires the interrogation of high-dimensionality data sets. Machine learning and artificial intelligence (ML/AI) workflows have permeated into nearly all aspects of daily life in the developed world but have not been implemented routinely in neurophysiological analyses. The power of these workflows includes the speed at which they can be deployed, their availability of open-source programming languages, and the objectivity permitted in their data analysis. We used classification-based algorithms, including random forest, gradient boosted machines, support vector machines, and neural networks, to test the hypothesis that the animal genotypes could be separated into their genotype based on interpretation of neurophysiological recordings. We then interrogate the models to identify what were the major features utilized by the algorithms to designate genotype classification. By using raw EEG and respiratory plethysmography data, we were able to predict which recordings came from genotype class with accuracies that were significantly improved relative to the no information rate, although EEG analyses showed more overlap between groups than respiratory plethysmography. In comparison, conventional methods where single features between animal classes were analyzed, differences between the genotypes tested using baseline neurophysiology measurements showed no statistical difference. However, ML/AI workflows successfully were capable of providing successful classification, indicating that interactions between features were different in these genotypes. ML/AI workflows provide new methodologies to interrogate neurophysiology data. However, their implementation must be done with care so as to provide high rigor and reproducibility between laboratories. We provide a series of recommendations on how to report the utilization of ML/AI workflows for the neurophysiology community.NEW & NOTEWORTHY ML/AI classification workflows are capable of providing insight into differences between genotypes for neurophysiology research. Analytical techniques utilized in the neurophysiology community can be augmented by implementing ML/AI workflows. Random forest is a robust classification algorithm for respiratory plethysmography data. Utilization of ML/AI workflows in neurophysiology research requires heightened transparency and improved community research standards.


Subject(s)
Electroencephalography , Gene Expression Profiling , Machine Learning , Neurophysiology/methods , Plethysmography , Respiration , Sleep/physiology , Animals , Astrocytes , Electroencephalography/methods , Gene Expression Profiling/methods , Genotype , Homeodomain Proteins , Mice , Plethysmography/methods , Transcription Factors , Workflow
8.
BMC Cancer ; 21(1): 861, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34315420

ABSTRACT

BACKGROUND: To investigate the global expression profile of miRNAs, their impact on cellular signaling pathways, and their association with poor prognostic parameters in African-American (AA) patients with triple negative breast cancer (TNBC). METHODS: Twenty-five samples of AA TNBC patients were profiled for global miRNA expression and stratified considering three clinical-pathological parameters: tumor size, lymph node (LN), and recurrence (REC) status. Differential miRNA expression analysis was performed for each parameter, and their discriminatory power was determined by Receiver Operating Characteristic (ROC) curve analysis. KMplotter was assessed to determine the association of the miRNAs with survival, and functional enrichment analysis to determine the main affected pathways and miRNA/mRNA target interactions. RESULTS: A panel of eight, 23 and 27 miRNAs were associated with tumor size, LN, and REC status, respectively. Combined ROC analysis of two (miR-2117, and miR-378c), seven (let-7f-5p, miR-1255b-5p, miR-1268b, miR-200c-3p, miR-520d, miR-527, and miR-518a-5p), and three (miR-1200, miR-1249-3p, and miR-1271-3p) miRNAs showed a robust discriminatory power based on tumor size (AUC = 0.917), LN (AUC = 0.945) and REC (AUC = 0.981) status, respectively. Enrichment pathway analysis revealed their involvement in proteoglycans and glycan and cancer-associated pathways. Eight miRNAs with deregulated expressions in patients with large tumor size, positive LN metastasis, and recurrence were significantly associated with lower survival rates. Finally, the construction of miRNA/mRNA networks based in experimentally validated mRNA targets, revealed nodes of critical cancer genes, such as AKT1, BCL2, CDKN1A, EZR and PTEN. CONCLUSIONS: Altogether, our data indicate that miRNA deregulated expression is a relevant biological factor that can be associated with the poor prognosis in TNBC of AA patients, by conferring to their TNBC cells aggressive phenotypes that are reflected in the clinical characteristics evaluated in this study.


Subject(s)
Biomarkers, Tumor , Black or African American/genetics , MicroRNAs/genetics , Triple Negative Breast Neoplasms/epidemiology , Triple Negative Breast Neoplasms/genetics , Adult , Aged , Computational Biology/methods , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Middle Aged , Prognosis , RNA Interference , RNA, Messenger/genetics , ROC Curve , Triple Negative Breast Neoplasms/mortality
9.
BMC Gastroenterol ; 20(1): 137, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32375666

ABSTRACT

BACKGROUND: Pancreatic and peri-pancreatic neoplasms encompass a variety of histotypes characterized by a heterogeneous prognostic impact. miRNAs are considered efficient candidate biomarkers due to their high stability in tissues and body fluids. We applied Nanostring profiling of circulating exosomal miRNAs to distinct pancreatic lesions in order to establish a source for biomarker development. METHODS: A series of 140 plasma samples obtained from patients affected by pancreatic ductal adenocarcinoma (PDAC, n = 58), pancreatic neuroendocrine tumors (PanNET, n = 42), intraductal papillary mucinous neoplasms (IPMN, n = 20), and ampulla of Vater carcinomas (AVC, n = 20) were analyzed. Comprehensive miRNA profiling was performed on plasma-derived exosomes. Relevant miRNAs were validated by qRT-PCR and in situ hybridization (ISH). RESULTS: Lesion specific miRNAs were identified through multiple disease comparisons. Selected miRNAs were validated in the plasma by qRT-PCR and at tissue level by ISH. We leveraged the presence of clinical subtypes with each disease cohort to identify miRNAs that are differentially enriched in aggressive phenotypes. CONCLUSIONS: This study shows that pancreatic lesions are characterized by specific exosomal-miRNA signatures. We also provide the basis for further explorations in order to better understand the relevance of these signatures in pancreatic neoplasms.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Exosomes/genetics , MicroRNAs/blood , Neuroendocrine Tumors/genetics , Pancreatic Neoplasms/genetics , Aged , Ampulla of Vater/pathology , Biomarkers, Tumor/genetics , Cohort Studies , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Pancreas/pathology , Prognosis , Pancreatic Neoplasms
10.
Proc Natl Acad Sci U S A ; 114(40): 10731-10736, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28923920

ABSTRACT

Loss of miR-15/16 is the most common genetic lesion in chronic lymphocytic leukemia (CLL), promoting overexpression of BCL2, which factors in leukemia pathogenesis. Indeed, an inhibitor of Bcl2, venetoclcax, is highly active in the treatment of patients with CLL. However, single-agent venetoclcax fails to eradicate minimal residual disease in most patients. Accordingly, we were interested in other genes that may be regulated by miR-15/16, which may target other drivers in CLL. We found that miR-15/16 targets ROR1, which encodes an onco-embryonic surface protein expressed on the CLL cells of over 90% of patients, but not on virtually all normal postpartum tissues. CLL with high-level expression of ROR1 also have high-level expression of Bcl2, but low-to-negligible miR-15/16 Moreover, CLL cases with high-level ROR1 have deletion(s) at the chromosomal location of the genes encoding miR-15/16 (13q14) more frequently than cases with low-to-negligible ROR1, implying that deletion of miR-15/16 may promote overexpression of ROR1, in addition to BCL2 ROR1 is a receptor for Wnt5a, which can promote leukemia-cell proliferation and survival, and can be targeted by cirmtuzumab, a humanized anti-ROR1 mAb. We find that this mAb can enhance the in vitro cytotoxic activity of venetoclcax for CLL cells with high-level expression of ROR1, indicating that combining these agents, which target ROR1 and Bcl2, may have additive, if not synergistic, activity in patients with this disease.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Biomarkers, Tumor/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , MicroRNAs/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/antagonists & inhibitors , Antibodies, Monoclonal/pharmacology , Biomarkers, Tumor/genetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cohort Studies , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/immunology , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Sulfonamides/pharmacology , Tumor Cells, Cultured
11.
Proc Natl Acad Sci U S A ; 114(21): E4203-E4212, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28484014

ABSTRACT

Mutated protein-coding genes drive the molecular pathogenesis of many diseases, including cancer. Specifically, mutated KRAS is a documented driver for malignant transformation, occurring early during the pathogenesis of cancers such as lung and pancreatic adenocarcinomas. Therapeutically, the indiscriminate targeting of wild-type and point-mutated transcripts represents an important limitation. Here, we leveraged on the design of miRNA-like artificial molecules (amiRNAs) to specifically target point-mutated genes, such as KRAS, without affecting their wild-type counterparts. Compared with an siRNA-like approach, the requirement of perfect complementarity of the microRNA seed region to a given target sequence in the microRNA/target model has proven to be a more efficient strategy, accomplishing the selective targeting of point-mutated KRAS in vitro and in vivo.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , MicroRNAs/genetics , Proto-Oncogene Proteins p21(ras)/genetics , RNA, Small Interfering/genetics , A549 Cells , Animals , Antineoplastic Agents/pharmacology , Apoptosis/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gefitinib , HEK293 Cells , Humans , Lung Neoplasms/genetics , Mice , Mice, Nude , Neoplasm Transplantation , Polymorphism, Single Nucleotide/genetics , Quinazolines/pharmacology , RNA Interference , Transplantation, Heterologous
12.
Nephrol Dial Transplant ; 34(7): 1197-1206, 2019 07 01.
Article in English | MEDLINE | ID: mdl-29800348

ABSTRACT

BACKGROUND: Up to 50% of lupus nephritis (LN) patients experience renal flares after their initial episode of LN. These flares contribute to poor renal outcomes. We postulated that intrarenal immune gene expression is different in flares compared with de novo LN, and conducted these studies to test this hypothesis. METHODS: Glomerular and tubulointerstitial immune gene expression was evaluated in 14 patients who had a kidney biopsy to diagnose LN and another biopsy at their first LN flare. Ten healthy living kidney donors were included as controls. RNA was extracted from laser microdissected formalin-fixed paraffin-embedded kidney biopsies. Gene expression was analyzed using the Nanostring nCounter® platform and validated by quantitative real-time polymerase chain reaction. Differentially expressed genes were analyzed by the Ingenuity Pathway Analysis and Panther Gene Ontology tools. RESULTS: Over 110 genes were differentially expressed between LN and healthy control kidney biopsies. Although there was considerable molecular heterogeneity between LN biopsies at diagnosis and flare, for about half the LN patients gene expression from the first LN biopsy clustered with the repeated LN biopsy. However, in all patients, a set of eight interferon alpha-controlled genes had a significantly higher expression in the diagnostic biopsy compared with the flare biopsy. In contrast, nine tumor necrosis factor alpha-controlled genes had higher expression in flare biopsies. CONCLUSIONS: There is significant heterogeneity in immune-gene expression of kidney tissue from LN patients. There are limited but important differences in gene expression between LN flares, which may influence treatment decisions.


Subject(s)
Biopsy/methods , Gene Expression , Genes/genetics , Immunity, Innate/genetics , Kidney Failure, Chronic/pathology , Kidney/pathology , Lupus Nephritis/genetics , Adult , Female , Humans , Kidney Failure, Chronic/etiology , Kidney Failure, Chronic/genetics , Lupus Nephritis/complications , Lupus Nephritis/pathology , Male , RNA/genetics
13.
J Anesth ; 33(6): 670-679, 2019 12.
Article in English | MEDLINE | ID: mdl-31612349

ABSTRACT

PURPOSE: To evaluate the effects of sex on miRNA expression in the hippocampus after isoflurane anesthesia in a neonatal piglet model. METHODS: Six male and 6 female piglets, aged 3-5 days, were anesthetized with 2% isoflurane in room air for 3 h. Full physiologic monitoring was observed. Untreated animals (6 male, 6 female) served as controls. Expression of miRNAs in hippocampus was assessed. RESULTS: In controls, miRNA expression in the hippocampus was highly conserved between males and females. However, 17/326 displayed sex-dependent differences: 10 miRNAs were more highly expressed in males; 7 showed lower expression in males than females. Isoflurane was associated with changes in the expression of distinct subsets of miRNAs in both males and females. In females, 14/326 miRNAs were significantly changed (3 downregulated; 11 upregulated); in males, 17/326 miRNAs were changed (7 downregulated; 10 upregulated). There was no overlap in significantly changed miRNAs between isoflurane-exposed males and females. CONCLUSIONS: In the neonatal piglet hippocampus, miRNA expression was highly conserved. There was no overlap in miRNA expression between isoflurane-exposed males and females, suggesting sex differences in isoflurane-induced miRNA expression. These results support the hypothesis that a clinically relevant exposure to isoflurane induces distinct miRNA signatures in the hippocampus of neonatal male and female piglets. Their functional relevance in anesthesia-induced neurotoxicity remains unknown, although changes in specific miRNAs may either contribute to or protect against anesthesia-induced neurotoxicity.


Subject(s)
Hippocampus/metabolism , Isoflurane/toxicity , MicroRNAs/genetics , Animals , Down-Regulation , Female , Male , Pilot Projects , Sex Factors , Swine
14.
J Surg Oncol ; 118(3): 501-509, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30132912

ABSTRACT

BACKGROUND AND OBJECTIVES: MicroRNAs (miRs) are noncoding RNAs that regulate protein translation and melanoma progression. Changes in plasma miR expression following surgical resection of metastatic melanoma are under-investigated. We hypothesize differences in miR expression exist following complete surgical resection of metastatic melanoma. METHODS: Blood collection pre- and post-surgical resection was performed in six individuals with solitary melanoma metastases. miR expression in extracted RNA was quantified using the NanoString nCounter Digital Analyzer. RESULTS: Pre- and post-surgical plasma samples contained 216 miRs with expression above baseline. Comparison of postsurgical to preresection samples revealed differential expression of 25 miRs: miR-let-7a, miR-let7g, miR-15a, miR-16, miR-22, miR-30b, miR-126, miR-140, miR-145, miR-148a, miR-150-5p, miR-191, miR-378i, miR-449c, miR-494, miR-513b, miR-548aa, miR-571, miR-587, miR-891b, miR-1260a, miR 1268a, miR-1976, miR-4268, miR-4454 (P < 0.05). Utilizing P < 0.0046 as a cutoff to control for one false positive among the 216 miRs revealed that postsurgical melanoma plasma samples had upregulation of miR-1260a (P = 0.0007) and downregulation of miR-150-5p (P = 0.0026) relative to pre-surgical samples. CONCLUSIONS: Differential expression of miR-150-5p and miR-1260a is present in plasma following surgical resection of metastatic melanoma in this small sample (n = 6) of melanoma patients. Therefore, further investigation of these plasma miRs as noninvasive biomarkers for melanoma is warranted.


Subject(s)
Gene Expression Regulation, Neoplastic , Melanoma/genetics , MicroRNAs/genetics , Neoplasm Recurrence, Local/genetics , Aged , Biomarkers, Tumor , Female , Follow-Up Studies , Gene Expression Profiling , Humans , Lymphatic Metastasis , Male , Melanoma/secondary , Melanoma/surgery , Middle Aged , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/surgery , Prognosis , Survival Rate
15.
Proc Natl Acad Sci U S A ; 112(26): E3355-64, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26080425

ABSTRACT

TRAIL (TNF-related apoptosis-inducing ligand) is a promising anticancer agent that can be potentially used as an alternative or complementary therapy because of its specific antitumor activity. However, TRAIL can also stimulate the proliferation of cancer cells through the activation of NF-κB, but the exact mechanism is still poorly understood. In this study, we show that chronic exposure to subtoxic concentrations of TRAIL results in acquired resistance. This resistance is associated with the increase in miR-21, miR-30c, and miR-100 expression, which target tumor-suppressor genes fundamental in the response to TRAIL. Importantly, down-regulation of caspase-8 by miR-21 blocks receptor interacting protein-1 cleavage and induces the activation of NF-κB, which regulates these miRNAs. Thus, TRAIL activates a positive feedback loop that sustains the acquired resistance and causes an aggressive phenotype. Finally, we prove that combinatory treatment of NF-κB inhibitors and TRAIL is able to revert resistance and reduce tumor growth, with important consequences for the clinical practice.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Lung Neoplasms/pathology , MicroRNAs/physiology , NF-kappa B/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , MicroRNAs/metabolism , Signal Transduction , TNF-Related Apoptosis-Inducing Ligand/metabolism , Transcription, Genetic
16.
Proc Natl Acad Sci U S A ; 112(7): 2169-74, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25646413

ABSTRACT

B-cell chronic lymphocytic leukemia (CLL) is the most common human leukemia and dysregulation of the T-cell leukemia/lymphoma 1 (TCL1) oncogene is a contributing event in the pathogenesis of the aggressive form of this disease based on transgenic mouse studies. To determine a role of microRNAs on the pathogenesis of the aggressive form of CLL we studied regulation of TCL1 expression in CLL by microRNAs. We identified miR-3676 as a regulator of TCL1 expression. We demonstrated that miR-3676 targets three consecutive 28-bp repeats within 3'UTR of TCL1 and showed that miR-3676 is a powerful inhibitor of TCL1. We further showed that miR-3676 expression is significantly down-regulated in four groups of CLL carrying the 11q deletions, 13q deletions, 17p deletions, or a normal karyotype compared with normal CD19(+) cord blood and peripheral blood B cells. In addition, the sequencing of 539 CLL samples revealed five germ-line mutations in six samples (1%) in miR-3676. Two of these mutations were loss-of-function mutations. Because miR-3676 is located at 17p13, only 500-kb centromeric of tumor protein p53 (Tp53), and is codeleted with Tp53, we propose that loss of miR-3676 causes high levels of TCL1 expression contributing to CLL progression.


Subject(s)
Gene Deletion , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , MicroRNAs/genetics , Proto-Oncogene Proteins/genetics , Tumor Suppressor Protein p53/genetics , Humans
17.
Ann Diagn Pathol ; 32: 10-16, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29414391

ABSTRACT

Understanding the metabolic profile of neurons with the hyperphosphorylated tau protein characteristic of Alzheimer's disease is essential to unraveling new potential therapies and diagnostics for the surgical pathologist. We stratified 75 brain tissues from Alzheimer's disease into hyperphosphorylated tau positive or negative and did co-expression analyses and qRTPCR for importin-ß and exportin-5 plus several bcl2 family members and compared the data to controls, Down's dementia and Parkinson's disease. There was a significant increase in the expression of importin-ß and exportin-5 in Alzheimer's disease relative to the three other categories (each p value<0.0001) where each protein co-localized with hyperphosphorylated tau. Both apoptotic and anti-apoptotic proteins were each significantly increased in Alzheimer's disease relative to the three other groups. Neurons with hyperphosphorylated tau in Alzheimer's disease have the profile of metabolically active cells including increased exportin-5 and importin-ß mRNA and proteins which indicates that immunohistochemistry testing of these proteins may aid the surgical pathologist in making a definitive diagnosis.


Subject(s)
Alzheimer Disease/diagnosis , Biomarkers/analysis , Karyopherins/biosynthesis , Proto-Oncogene Proteins c-bcl-2/biosynthesis , beta Karyopherins/biosynthesis , Brain/metabolism , Humans , Karyopherins/analysis , Pathologists , Proto-Oncogene Proteins c-bcl-2/analysis , beta Karyopherins/analysis
18.
Ann Diagn Pathol ; 32: 28-34, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29414394

ABSTRACT

Acute reoviral infection has been extensively studied given the virus's propensity to target malignant cells and activate caspase-3 mediated apoptosis. Reovirus infection of malignant N1E-115 mouse neuroblastoma cells led to significant increased expression of importin-ß and exportin-5 mRNAs (qRTPCR) and proteins (immunohistochemistry) which was partially blocked by small interfering LNA oligomers directed against the reoviral genome. Co-expression analysis showed that the N1E-115 cells that contained reoviral capsid protein had accumulated importin-ß and exportin-5, as well as activated caspase 3. Reoviral oncolysis using a syngeneic mouse model of multiple myeloma similarly induced a significant increase in importin-ß and exportin-5 proteins that were co-expressed with reoviral capsid protein and caspase-3. Apoptotic proteins (BAD, BIM, PUMA, NOXA, BAK, BAX) were increased with infection and co-localized with reoviral capsid protein. Surprisingly the anti-apoptotic MCL1 and bcl2 were also increased and co-localized with the capsid protein suggesting that it was the balance of pro-apoptotic molecules that correlated with activation of caspase-3. In summary, productive reoviral infection is strongly correlated with elevated importin-ß and exportin-5 levels which may serve as biomarkers of the disease in clinical specimens.


Subject(s)
Biomarkers/metabolism , Karyopherins/metabolism , Multiple Myeloma/metabolism , Oncolytic Virotherapy/methods , Reoviridae Infections/metabolism , beta Karyopherins/metabolism , Animals , Cell Line, Tumor , Mice , Mice, Inbred C57BL , Multiple Myeloma/virology , Oncolytic Viruses
19.
Ann Diagn Pathol ; 34: 103-109, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29661714

ABSTRACT

This study examined the molecular correlates of Down's dementia. qRTPCR for chromosome 21 microRNAs was correlated with in situ hybridization, immunohistochemistry for microRNA targets, mRNAs located on chromosome 21, and neurofibrillary tangles in human and the Ts65 dn mouse Down's model. qRTPCR for the microRNAs on the triplicated chromosome showed miR-155 dominance in brain tissues (14.3 fold increase, human and 24.2 fold increase, mouse model) that co-expressed with hyperphosphorylated tau protein. miR-155 was not elevated in Alzheimer's disease or neonates with Downs' syndrome. Chromosome 21 genes APP/BA-42, DYRK1a and BACH1 were not correlated to pathologic changes in Down's dementia. Validated CNS targets of miR-155 that were present in controls and Alzheimer's disease but lacking in Down's dementia brains included BACH1, CoREST1, bcl6, BIM, bcl10, cyclin D, and SAPK4. It is concluded that Down's dementia strongly correlated with overexpression of chromosome 21 microRNA 155 with concomitant reduction of multiple CNS-functional targets. This study highlights the need for anatomic pathologists to determine the specific and diverse pathways cells may take to form neurofibrillary tangles in the different dementias.


Subject(s)
Alzheimer Disease/genetics , Dementia/genetics , Down Syndrome/genetics , MicroRNAs/genetics , Animals , Brain/pathology , Disease Models, Animal , Down Syndrome/pathology , Humans , Immunohistochemistry , Mice , MicroRNAs/isolation & purification , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Up-Regulation
20.
Xenotransplantation ; 24(5)2017 09.
Article in English | MEDLINE | ID: mdl-28718514

ABSTRACT

BACKGROUND: Survival and longevity of xenotransplants depend on immune function and ability to integrate energy metabolism between cells from different species. However, mechanisms for interspecies cross talk in energy metabolism are not well understood. White adipose tissue stores energy and is capable of mobilization and dissipation of energy as heat (thermogenesis) by adipocytes expressing uncoupling protein 1 (Ucp1). Both pathways are under the control of vitamin A metabolizing enzymes. Deficient retinoic acid production in aldehyde dehydrogenase 1 A1 (Aldh1a1) knockout adipocytes (KO) inhibits adipogenesis and increases thermogenesis. Here we test the role Aldh1a1 in regulation of lipid metabolism in xenocultures. METHODS: Murine wide-type (WT) and KO pre-adipocytes were encapsulated into a poly-L-lysine polymer that allows exchange of humoral factors <32kD via nanopores. Encapsulated murine adipocytes were co-incubated with primary differentiated canine adipocytes. Then, expression of adipogenic and thermogenic genes in differentiated canine adipocytes was detected by real-time polymerase chain reaction (PCR). The regulatory factors in WT and KO cells were identified by comparison of secretome using proteomics and in transcriptome by gene microarray. RESULTS: Co-culture of encapsulated mouse KO vs WT adipocytes increased expression of peroxisome proliferator-activated receptor gamma (Pparg), but reduced expression of its target genes fatty acid binding protein 4 (Fabp4), and adipose triglyceride lipase (Atgl) in canine adipocytes, suggesting inhibition of PPARγ activation. Co-culture with KO adipocytes also induced expression of Ucp1 in canine adipocytes compared to expression in WT adipocytes. Cumulatively, murine KO compared to WT adipocytes decreased lipid accumulation in canine adipocytes. Comparative proteomics revealed significantly higher levels of vitamin A carriers, retinol binding protein 4 (RBP4), and lipokalin 2 (LCN2) in KO vs WT adipocytes. CONCLUSIONS: Our data demonstrate the functional exchange of regulatory factors between adipocytes from different species for regulation of energy balance. RBP4 and LCN2 appear to be involved in the transport of retinoids for regulation of lipid accumulation and thermogenesis in xenocultures. While the rarity of thermogenic adipocytes in humans and dogs precludes their use for autologous transplantation, our study demonstrates that xenotransplantation of engineered cells could be a potential solution for the reduction in obesity in dogs and a strategy for translation to patients.


Subject(s)
Adipocytes/metabolism , Energy Metabolism/physiology , Isoenzymes/metabolism , Obesity/therapy , Retinal Dehydrogenase/metabolism , Adipogenesis/physiology , Aldehyde Dehydrogenase 1 Family , Animals , Cell Differentiation/physiology , Dogs , Mice , Thermogenesis/physiology , Transplantation, Heterologous/methods , Vitamin A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL