Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phys Rev Lett ; 125(6): 067402, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32845676

ABSTRACT

We experimentally demonstrate a dipolar polariton based electric-field sensor. We tune and optimize the sensitivity of the sensor by varying the dipole moment of polaritons. We show polariton interactions play an important role in determining the conditions for optimal electric-field sensing, and achieve a sensitivity of 0.12 V m^{-1} Hz^{-0.5}. Finally, we apply the sensor to illustrate that excitation of polaritons modifies the electric field in a spatial region much larger than the optical excitation spot.

2.
Phys Rev Lett ; 121(22): 227402, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30547610

ABSTRACT

Nonperturbative coupling between cavity photons and excitons leads to the formation of hybrid light-matter excitations, termed polaritons. In structures where photon absorption leads to the creation of excitons with aligned permanent dipoles, the elementary excitations, termed dipolar polaritons, are expected to exhibit enhanced interactions. Here, we report a substantial increase in interaction strength between dipolar polaritons as the size of the dipole is increased by tuning the applied gate voltage. To this end, we use coupled quantum well structures embedded inside a microcavity where coherent electron tunneling between the wells creates the excitonic dipole. Modifications of the interaction strength are characterized by measuring the changes in the reflected light intensity when polaritons are driven with a resonant laser. The factor of 6.5 increase in the interaction-strength-to-linewidth ratio that we obtain indicates that dipolar polaritons could constitute an important step towards a demonstration of the polariton blockade effect, and thereby to form the building blocks of many-body states of light.

3.
Phys Rev Lett ; 120(5): 057401, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29481149

ABSTRACT

Elementary quasiparticles in a two-dimensional electron system can be described as exciton polarons since electron-exciton interactions ensures dressing of excitons by Fermi-sea electron-hole pair excitations. A relevant open question is the modification of this description when the electrons occupy flat bands and electron-electron interactions become prominent. Here, we perform cavity spectroscopy of a two-dimensional electron system in the strong coupling regime, where polariton resonances carry signatures of strongly correlated quantum Hall phases. By measuring the evolution of the polariton splitting under an external magnetic field, we demonstrate the modification of polaron dressing that we associate with filling factor dependent electron-exciton interactions.

4.
Science ; 346(6207): 332-5, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25278508

ABSTRACT

Light-matter interaction has played a central role in understanding as well as engineering new states of matter. Reversible coupling of excitons and photons enabled groundbreaking results in condensation and superfluidity of nonequilibrium quasiparticles with a photonic component. We investigated such cavity-polaritons in the presence of a high-mobility two-dimensional electron gas, exhibiting strongly correlated phases. When the cavity was on resonance with the Fermi level, we observed previously unknown many-body physics associated with a dynamical hole-scattering potential. In finite magnetic fields, polaritons show distinct signatures of integer and fractional quantum Hall ground states. Our results lay the groundwork for probing nonequilibrium dynamics of quantum Hall states and exploiting the electron density dependence of polariton splitting so as to obtain ultrastrong optical nonlinearities.

SELECTION OF CITATIONS
SEARCH DETAIL