Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
PLoS Genet ; 20(6): e1011310, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38857303

ABSTRACT

Growth deficiency is a characteristic feature of both Kabuki syndrome 1 (KS1) and Kabuki syndrome 2 (KS2), Mendelian disorders of the epigenetic machinery with similar phenotypes but distinct genetic etiologies. We previously described skeletal growth deficiency in a mouse model of KS1 and further established that a Kmt2d-/- chondrocyte model of KS1 exhibits precocious differentiation. Here we characterized growth deficiency in a mouse model of KS2, Kdm6atm1d/+. We show that Kdm6atm1d/+ mice have decreased femur and tibia length compared to controls and exhibit abnormalities in cortical and trabecular bone structure. Kdm6atm1d/+ growth plates are also shorter, due to decreases in hypertrophic chondrocyte size and hypertrophic zone height. Given these disturbances in the growth plate, we generated Kdm6a-/- chondrogenic cell lines. Similar to our prior in vitro model of KS1, we found that Kdm6a-/- cells undergo premature, enhanced differentiation towards chondrocytes compared to Kdm6a+/+ controls. RNA-seq showed that Kdm6a-/- cells have a distinct transcriptomic profile that indicates dysregulation of cartilage development. Finally, we performed RNA-seq simultaneously on Kmt2d-/-, Kdm6a-/-, and control lines at Days 7 and 14 of differentiation. This revealed surprising resemblance in gene expression between Kmt2d-/- and Kdm6a-/- at both time points and indicates that the similarity in phenotype between KS1 and KS2 also exists at the transcriptional level.


Subject(s)
Abnormalities, Multiple , Chondrocytes , Disease Models, Animal , Face , Hematologic Diseases , Histone Demethylases , Vestibular Diseases , Animals , Vestibular Diseases/genetics , Vestibular Diseases/pathology , Mice , Face/abnormalities , Histone Demethylases/genetics , Histone Demethylases/metabolism , Hematologic Diseases/genetics , Hematologic Diseases/pathology , Chondrocytes/metabolism , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Cell Differentiation/genetics , Chondrogenesis/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/deficiency , Humans , Mice, Knockout , Phenotype , Histone-Lysine N-Methyltransferase , Myeloid-Lymphoid Leukemia Protein
2.
Hum Mol Genet ; 31(13): 2164-2184, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35094088

ABSTRACT

Sotos syndrome (SS), the most common overgrowth with intellectual disability (OGID) disorder, is caused by inactivating germline mutations of NSD1, which encodes a histone H3 lysine 36 methyltransferase. To understand how NSD1 inactivation deregulates transcription and DNA methylation (DNAm), and to explore how these abnormalities affect human development, we profiled transcription and DNAm in SS patients and healthy control individuals. We identified a transcriptional signature that distinguishes individuals with SS from controls and was also deregulated in NSD1-mutated cancers. Most abnormally expressed genes displayed reduced expression in SS; these downregulated genes consisted mostly of bivalent genes and were enriched for regulators of development and neural synapse function. DNA hypomethylation was strongly enriched within promoters of transcriptionally deregulated genes: overexpressed genes displayed hypomethylation at their transcription start sites while underexpressed genes featured hypomethylation at polycomb binding sites within their promoter CpG island shores. SS patients featured accelerated molecular aging at the levels of both transcription and DNAm. Overall, these findings indicate that NSD1-deposited H3K36 methylation regulates transcription by directing promoter DNA methylation, partially by repressing polycomb repressive complex 2 (PRC2) activity. These findings could explain the phenotypic similarity of SS to OGID disorders that are caused by mutations in PRC2 complex-encoding genes.


Subject(s)
Sotos Syndrome , DNA Methylation/genetics , Genes, Developmental , Histone Methyltransferases/genetics , Histone-Lysine N-Methyltransferase/genetics , Humans , Mutation , Sotos Syndrome/genetics
3.
Hum Genet ; 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36952035

ABSTRACT

The multidisciplinary Epigenetics and Chromatin Clinic at Johns Hopkins provides comprehensive medical care for individuals with rare disorders that involve disrupted epigenetics. Initially centered on classical imprinting disorders, the focus shifted to the rapidly emerging group of genetic disorders resulting from pathogenic germline variants in epigenetic machinery genes. These are collectively called the Mendelian disorders of the epigenetic machinery (MDEMs), or more broadly, Chromatinopathies. In five years, 741 clinic visits have been completed for 432 individual patients, with 153 having confirmed epigenetic diagnoses. Of these, 115 individuals have one of 26 MDEMs with every single one exhibiting global developmental delay and/or intellectual disability. This supports prior observations that intellectual disability is the most common phenotypic feature of MDEMs. Additional common phenotypes in our clinic include growth abnormalities and neurodevelopmental issues, particularly hypotonia, attention-deficit/hyperactivity disorder (ADHD), and anxiety, with seizures and autism being less common. Overall, our patient population is representative of the broader group of MDEMs and includes mostly autosomal dominant disorders impacting writers more so than erasers, readers, and remodelers of chromatin marks. There is an increased representation of dual function components with a reader and an enzymatic domain. As expected, diagnoses were made mostly by sequencing but were aided in some cases by DNA methylation profiling. Our clinic has helped to facilitate the discovery of two new disorders, and our providers are actively developing and implementing novel therapeutic strategies for MDEMs. These data and our high follow-up rate of over 60% suggest that we are achieving our mission to diagnose, learn from, and provide optimal care for our patients with disrupted epigenetics.

4.
Am J Hum Genet ; 106(2): 234-245, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31928709

ABSTRACT

Germline pathogenic variants in chromatin-modifying enzymes are a common cause of pediatric developmental disorders. These enzymes catalyze reactions that regulate epigenetic inheritance via histone post-translational modifications and DNA methylation. Cytosine methylation (5-methylcytosine [5mC]) of DNA is the quintessential epigenetic mark, yet no human Mendelian disorder of DNA demethylation has yet been delineated. Here, we describe in detail a Mendelian disorder caused by the disruption of DNA demethylation. TET3 is a methylcytosine dioxygenase that initiates DNA demethylation during early zygote formation, embryogenesis, and neuronal differentiation and is intolerant to haploinsufficiency in mice and humans. We identify and characterize 11 cases of human TET3 deficiency in eight families with the common phenotypic features of intellectual disability and/or global developmental delay; hypotonia; autistic traits; movement disorders; growth abnormalities; and facial dysmorphism. Mono-allelic frameshift and nonsense variants in TET3 occur throughout the coding region. Mono-allelic and bi-allelic missense variants localize to conserved residues; all but one such variant occur within the catalytic domain, and most display hypomorphic function in an assay of catalytic activity. TET3 deficiency and other Mendelian disorders of the epigenetic machinery show substantial phenotypic overlap, including features of intellectual disability and abnormal growth, underscoring shared disease mechanisms.


Subject(s)
DNA Demethylation , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Dioxygenases/deficiency , Adult , Amino Acid Sequence , Autistic Disorder/genetics , Autistic Disorder/pathology , Child , Child, Preschool , Dioxygenases/chemistry , Dioxygenases/genetics , Embryonic Development , Female , Gene Expression Regulation, Developmental , Growth Disorders/genetics , Growth Disorders/pathology , Humans , Infant , Male , Middle Aged , Movement Disorders/genetics , Movement Disorders/pathology , Pedigree , Protein Conformation , Sequence Homology , Young Adult
5.
Am J Med Genet A ; 191(10): 2591-2601, 2023 10.
Article in English | MEDLINE | ID: mdl-37470210

ABSTRACT

The aim of this study was to provide a descriptive overview of the social characteristics associated with Wiedemann-Steiner syndrome (WSS). A total of 24 parents of children/adults with WSS (11F, mean age = 12.94 years, SD = 8.00) completed the Social Responsiveness Scale 2nd Edition (SRS-2); Colorado Learning Difficulties Questionnaire (CLDQ) and Strengths and Difficulties Questionnaire (SDQ). Almost half our sample reported a diagnosis of autism spectrum disorder (ASD) and 70% had intellectual disability. On the SDQ, over 90% of participants were rated in borderline/clinical ranges in Peer Problems, yet the majority fell within normal limits in Prosocial Behaviors. Most fell in the moderate/severe difficulties ranges across SRS-2 Social Cognition, Communication, and Restricted/Repetitive Behaviors scales (all >70%); whereas substantially less participants met these ranges for deficits in Social Awareness (50%) and Social Motivation (33.33%). A pattern of relatively strong prosocial skills and social drive in the context of difficulties with inflexible behaviors, social cognition, and communication was observed, regardless of gender, ASD or intellectual disability diagnosis. The social phenotype associated with WSS is characterized by some autistic features paired with unusually high social motivation and prosocial tendencies.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Intellectual Disability , Child , Adult , Humans , Adolescent , Intellectual Disability/diagnosis , Intellectual Disability/epidemiology , Intellectual Disability/complications , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/epidemiology , Autism Spectrum Disorder/complications , Phenotype
6.
Am J Med Genet A ; 191(2): 437-444, 2023 02.
Article in English | MEDLINE | ID: mdl-36373844

ABSTRACT

This study examined anxiety in Wiedemann-Steiner syndrome (WSS). Eighteen caregivers and participants with WSS completed the parent- and self-report versions of the Screen for Child Anxiety Related Disorder or the adapted version of the Screen for Adult Anxiety Related Disorder. Approximately 33.33% of parents and 65% of participants with WSS rated in the clinical range for overall anxiety. Across anxiety subtypes, parents primarily indicated concerns with Separation Anxiety (72%), which was also endorsed by the majority of participants with WSS (82%). The emergent trend showed Total Anxiety increased with age based on parent-informant ratings. The behavioral phenotype of WSS includes elevated anxiety. Clinical management should include incorporating early behavioral interventions to bolster emotion regulation given the observed risk of anxiety with age.


Subject(s)
Abnormalities, Multiple , Intellectual Disability , Humans , Intellectual Disability/genetics , Abnormalities, Multiple/genetics , Anxiety
7.
J Int Neuropsychol Soc ; 29(5): 512-518, 2023 06.
Article in English | MEDLINE | ID: mdl-36062544

ABSTRACT

OBJECTIVES: Wiedemann-Steiner syndrome (WSS) is a rare Mendelian disorder of the epigenetic machinery caused by heterozygous pathogenic variants in KMT2A. Currently, the specific neurocognitive profile of this syndrome remains unknown. This case series provides insight into the cognitive phenotype of WSS. METHODS: This study involves a retrospective medical chart review of 10 pediatric patients, each with a molecularly confirmed diagnosis of WSS who underwent clinical neuropsychological evaluation at an academic medical center. RESULTS: The majority of patients performed in the below average to very low ranges in Nonverbal Reasoning, Visual/Spatial Perception, Visuoconstruction, Visual Memory, Attention, Working Memory and Math Computation skills. In contrast, over half the sample performed within normal limits on Receptive Vocabulary, Verbal Memory, and Word Reading. Wilcoxon signed rank test showed weaker Nonverbal versus Verbal Reasoning skills (p = .005). Most caregivers reported deficits in executive functioning, most notably in emotion regulation. CONCLUSIONS: Nonverbal reasoning/memory, visuospatial/construction, attention, working memory, executive functioning, and math computation skills are areas of weakness among those with WSS. These findings overlap with research on Kabuki syndrome, which is caused by variants in KMT2D, and suggest disruption in the neurogenesis of the hippocampal formation may drive shared pathogenesis of the two syndromes.


Subject(s)
Abnormalities, Multiple , Intellectual Disability , Humans , Retrospective Studies , Abnormalities, Multiple/genetics , Memory, Short-Term , Neuropsychological Tests
8.
Am J Med Genet A ; 188(7): 2217-2225, 2022 07.
Article in English | MEDLINE | ID: mdl-35384273

ABSTRACT

Kabuki syndrome is a Mendelian disorder of the epigenetic machinery characterized by typical dysmorphic features, intellectual disability, and postnatal growth deficiency. Pathogenic variants in the genes encoding the chromatin modifiers KMT2D and KDM6A are responsible for Kabuki syndrome 1 (KS1) and Kabuki syndrome 2 (KS2), respectively. In addition, 11 cases of KS1 caused by mosaic variants in KMT2D have been reported in the literature. Some of these individuals display milder craniofacial and growth phenotypes, and most do not have congenital heart defects. We report the case of an infant with severe hypoplastic left heart syndrome with mitral atresia and aortic atresia (HLHS MA-AA), pulmonary vein stenosis, and atypical facies with a somatic mosaic de novo nonsense variant in KMT2D (c.8200C>T, p.R2734*) identified on trio exome sequencing of peripheral blood and present in 11.2% of sequencing reads. KS was confirmed with EpiSign, a diagnostic genome-wide DNA methylation platform used to identify epigenetic signatures. This case suggests that use of this newly available clinical test can guide the interpretation of low-level mosaic variants identified through sequencing and suggests a new lower limit of mosaicism in whole blood required for a diagnosis of KS.


Subject(s)
Abnormalities, Multiple , Heart Defects, Congenital , Hematologic Diseases , Vestibular Diseases , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , DNA Methylation/genetics , Face/abnormalities , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Hematologic Diseases/diagnosis , Hematologic Diseases/genetics , Humans , Mutation , Vestibular Diseases/diagnosis , Vestibular Diseases/genetics
9.
Hum Mol Genet ; 28(R2): R254-R264, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31595951

ABSTRACT

The epigenetic machinery in conjunction with the transcriptional machinery is responsible for maintaining genome-wide chromatin states and dynamically regulating gene expression. Mendelian disorders of the epigenetic machinery (MDEMs) are genetic disorders resulting from mutations in components of the epigenetic apparatus. Though individually rare, MDEMs have emerged as a collectively common etiology for intellectual disability (ID) and growth disruption. Studies in model organisms and humans have demonstrated dosage sensitivity of this gene group with haploinsufficiency as a predominant disease mechanism. The epigenetic machinery consists of three enzymatic components (writers, erasers and chromatin remodelers) as well as one non-enzymatic group (readers). A tally of the entire census of such factors revealed that although multiple enzymatic activities never coexist within a single component, individual enzymatic activities often coexist with a reader domain. This group of disorders disrupts both the chromatin and transcription states of target genes downstream of the given component but also DNA methylation on a global scale. Elucidation of these global epigenetic changes may inform our understanding of disease pathogenesis and have diagnostic utility. Moreover, many therapies targeting epigenetic marks already exist, and some have proven successful in treating cancer. This, along with the recent observation that neurological dysfunction in these disorders may in fact be treatable in postnatal life, suggests that the scientific community should prioritize this group as a potentially treatable cause of ID. Here we summarize the recent expansion and major characteristics of MDEMs, as well as the unique therapeutic prospects for this group of disorders.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Chromatin/enzymology , Epigenesis, Genetic , Intellectual Disability/genetics , Animals , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , DNA Methylation/genetics , Histone Acetyltransferases/deficiency , Humans , Methyltransferases/metabolism , Mice , Rett Syndrome/genetics , Rett Syndrome/metabolism , Sotos Syndrome/enzymology , Sotos Syndrome/genetics , alpha-Thalassemia/genetics
10.
Am J Med Genet A ; 185(6): 1649-1665, 2021 06.
Article in English | MEDLINE | ID: mdl-33783954

ABSTRACT

Wiedemann-Steiner syndrome (WSS) is an autosomal dominant disorder caused by monoallelic variants in KMT2A and characterized by intellectual disability and hypertrichosis. We performed a retrospective, multicenter, observational study of 104 individuals with WSS from five continents to characterize the clinical and molecular spectrum of WSS in diverse populations, to identify physical features that may be more prevalent in White versus Black Indigenous People of Color individuals, to delineate genotype-phenotype correlations, to define developmental milestones, to describe the syndrome through adulthood, and to examine clinicians' differential diagnoses. Sixty-nine of the 82 variants (84%) observed in the study were not previously reported in the literature. Common clinical features identified in the cohort included: developmental delay or intellectual disability (97%), constipation (63.8%), failure to thrive (67.7%), feeding difficulties (66.3%), hypertrichosis cubiti (57%), short stature (57.8%), and vertebral anomalies (46.9%). The median ages at walking and first words were 20 months and 18 months, respectively. Hypotonia was associated with loss of function (LoF) variants, and seizures were associated with non-LoF variants. This study identifies genotype-phenotype correlations as well as race-facial feature associations in an ethnically diverse cohort, and accurately defines developmental trajectories, medical comorbidities, and long-term outcomes in individuals with WSS.


Subject(s)
Genetic Predisposition to Disease , Growth Disorders/genetics , Histone-Lysine N-Methyltransferase/genetics , Hypertrichosis/congenital , Intellectual Disability/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Black People/genetics , Constipation/epidemiology , Constipation/genetics , Constipation/pathology , Failure to Thrive/epidemiology , Failure to Thrive/genetics , Failure to Thrive/pathology , Genetic Association Studies , Growth Disorders/epidemiology , Growth Disorders/pathology , Humans , Hypertrichosis/epidemiology , Hypertrichosis/genetics , Hypertrichosis/pathology , Intellectual Disability/epidemiology , Intellectual Disability/pathology , Loss of Function Mutation/genetics , Retrospective Studies , White People/genetics
11.
Am J Med Genet A ; 185(1): 119-133, 2021 01.
Article in English | MEDLINE | ID: mdl-33098347

ABSTRACT

Dubowitz syndrome (DubS) is considered a recognizable syndrome characterized by a distinctive facial appearance and deficits in growth and development. There have been over 200 individuals reported with Dubowitz or a "Dubowitz-like" condition, although no single gene has been implicated as responsible for its cause. We have performed exome (ES) or genome sequencing (GS) for 31 individuals clinically diagnosed with DubS. After genome-wide sequencing, rare variant filtering and computational and Mendelian genomic analyses, a presumptive molecular diagnosis was made in 13/27 (48%) families. The molecular diagnoses included biallelic variants in SKIV2L, SLC35C1, BRCA1, NSUN2; de novo variants in ARID1B, ARID1A, CREBBP, POGZ, TAF1, HDAC8, and copy-number variation at1p36.11(ARID1A), 8q22.2(VPS13B), Xp22, and Xq13(HDAC8). Variants of unknown significance in known disease genes, and also in genes of uncertain significance, were observed in 7/27 (26%) additional families. Only one gene, HDAC8, could explain the phenotype in more than one family (N = 2). All but two of the genomic diagnoses were for genes discovered, or for conditions recognized, since the introduction of next-generation sequencing. Overall, the DubS-like clinical phenotype is associated with extensive locus heterogeneity and the molecular diagnoses made are for emerging clinical conditions sharing characteristic features that overlap the DubS phenotype.


Subject(s)
Eczema/diagnosis , Eczema/genetics , Genetic Predisposition to Disease , Growth Disorders/diagnosis , Growth Disorders/genetics , Histone Deacetylases/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Microcephaly/diagnosis , Microcephaly/genetics , Repressor Proteins/genetics , Adolescent , Child , Child, Preschool , DNA Copy Number Variations/genetics , Eczema/pathology , Exome/genetics , Facies , Female , Genome, Human/genetics , Genomics/methods , Growth Disorders/pathology , Humans , Infant , Intellectual Disability/pathology , Male , Microcephaly/pathology , Phenotype , Exome Sequencing
12.
Hum Mutat ; 39(9): 1226-1237, 2018 09.
Article in English | MEDLINE | ID: mdl-29897170

ABSTRACT

Malan syndrome is an overgrowth disorder described in a limited number of individuals. We aim to delineate the entity by studying a large group of affected individuals. We gathered data on 45 affected individuals with a molecularly confirmed diagnosis through an international collaboration and compared data to the 35 previously reported individuals. Results indicate that height is > 2 SDS in infancy and childhood but in only half of affected adults. Cardinal facial characteristics include long, triangular face, macrocephaly, prominent forehead, everted lower lip, and prominent chin. Intellectual disability is universally present, behaviorally anxiety is characteristic. Malan syndrome is caused by deletions or point mutations of NFIX clustered mostly in exon 2. There is no genotype-phenotype correlation except for an increased risk for epilepsy with 19p13.2 microdeletions. Variants arose de novo, except in one family in which mother was mosaic. Variants causing Malan and Marshall-Smith syndrome can be discerned by differences in the site of stop codon formation. We conclude that Malan syndrome has a well recognizable phenotype that usually can be discerned easily from Marshall-Smith syndrome but rarely there is some overlap. Differentiation from Sotos and Weaver syndrome can be made by clinical evaluation only.


Subject(s)
Abnormalities, Multiple/genetics , Congenital Hypothyroidism/genetics , Craniofacial Abnormalities/genetics , Hand Deformities, Congenital/genetics , Intellectual Disability/genetics , NFI Transcription Factors/genetics , Sotos Syndrome/genetics , Abnormalities, Multiple/physiopathology , Adolescent , Adult , Bone Diseases, Developmental/genetics , Bone Diseases, Developmental/physiopathology , Child , Child, Preschool , Chromosome Deletion , Congenital Hypothyroidism/physiopathology , Craniofacial Abnormalities/physiopathology , Developmental Disabilities/genetics , Developmental Disabilities/physiopathology , Exons/genetics , Female , Hand Deformities, Congenital/physiopathology , Humans , Intellectual Disability/physiopathology , Male , Megalencephaly/genetics , Megalencephaly/physiopathology , Mutation, Missense/genetics , Phenotype , Septo-Optic Dysplasia/genetics , Septo-Optic Dysplasia/physiopathology , Sotos Syndrome/physiopathology , Young Adult
14.
Annu Rev Genomics Hum Genet ; 15: 269-93, 2014.
Article in English | MEDLINE | ID: mdl-25184531

ABSTRACT

Mendelian disorders of the epigenetic machinery are a newly delineated group of multiple congenital anomaly and intellectual disability syndromes resulting from mutations in genes encoding components of the epigenetic machinery. The gene products affected in these inherited conditions act in trans and are expected to have widespread epigenetic consequences. Many of these syndromes demonstrate phenotypic overlap with classical imprinting disorders and with one another. The various writer and eraser systems involve opposing players, which we propose must maintain a balance between open and closed chromatin states in any given cell. An imbalance might lead to disrupted expression of disease-relevant target genes. We suggest that classifying disorders based on predicted effects on this balance would be informative regarding pathogenesis. Furthermore, strategies targeted at restoring this balance might offer novel therapeutic avenues, taking advantage of available agents such as histone deacetylase inhibitors and histone acetylation antagonists.


Subject(s)
Chromatin/genetics , Epigenesis, Genetic , Intellectual Disability/genetics , Nervous System Malformations/genetics , Chromatin/pathology , DNA Methylation/genetics , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/genetics , Histones/genetics , Histones/metabolism , Humans , Intellectual Disability/classification , Intellectual Disability/drug therapy , Intellectual Disability/pathology , Nervous System Malformations/classification , Nervous System Malformations/drug therapy , Nervous System Malformations/pathology
16.
Am J Med Genet A ; 170(8): 2002-11, 2016 08.
Article in English | MEDLINE | ID: mdl-27145208

ABSTRACT

DNM1L encodes dynamin-related protein 1 (DRP1/DLP1), a key component of the mitochondrial fission machinery that is essential for proper functioning of the mammalian brain. Previously reported probands with de novo missense mutations in DNM1L presented in the first year of life with severe encephalopathy and refractory epilepsy, with several dying within the first several weeks after birth. In contrast, we report identical novel missense mutations in DNM1L in two unrelated probands who experienced normal development for several years before presenting with refractory focal status epilepticus and subsequent rapid neurological decline. We expand the phenotype of DNM1L-related mitochondrial fission defects, reveal common unique clinical characteristics and imaging findings, and compare the cellular impact of this novel mutation to the previously reported A395D lethal variant. We demonstrate that our R403C mutation, which resides in the assembly region of DRP1, acts by a dominant-negative mechanism and reduces oligomerization, mitochondrial fission activity, and mitochondrial recruitment of DRP1, but to a lesser extent compared to the A395D mutation. In contrast to the initial report of neonatal lethality resulting from DNM1L mutation and DRP1 dysfunction, our results show that milder DRP1 impairment is compatible with normal early development and subsequently results in a distinct set of neurological findings. In addition, we identify a common pathogenic mechanism whereby DNM1L mutations impair mitochondrial fission. © 2016 Wiley Periodicals, Inc.


Subject(s)
Brain Diseases/diagnosis , Brain Diseases/genetics , Epilepsy/diagnosis , Epilepsy/genetics , GTP Phosphohydrolases/genetics , Genes, Dominant , Microtubule-Associated Proteins/genetics , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/genetics , Mutation , Age Factors , Animals , Brain/abnormalities , Cell Line , Child, Preschool , Dynamins , Epilepsy/drug therapy , Exome , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/metabolism , Gene Expression , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Humans , Magnetic Resonance Imaging , Male , Mice , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/metabolism , Mitochondria/genetics , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Mutation, Missense , Phenotype , Protein Binding , Protein Transport
17.
Hum Mutat ; 35(3): 283-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24375697

ABSTRACT

DNA sequencing has become a powerful method to discover the genetic basis of disease. Standard, widely used protocols for analysis usually begin by comparing each individual to the human reference genome. When applied to a set of related individuals, this approach reveals millions of differences, most of which are shared among the individuals and unrelated to the disease being investigated. We have developed a novel algorithm for variant detection, one that compares DNA sequences directly to one another, without aligning them to the reference genome. When used to find de novo mutations in exome sequences from family trios, or to compare normal and diseased samples from the same individual, the new method, direct alignment for mutation discovery (DIAMUND), produces a dramatically smaller list of candidate mutations than previous methods, without losing sensitivity to detect the true cause of a genetic disease. We demonstrate our results on several example cases, including two family trios in which it correctly found the disease-causing variant while excluding thousands of harmless variants that standard methods had identified.


Subject(s)
Genome, Human , Mutation , Sequence Analysis, DNA/methods , Algorithms , Computational Biology , Exome , Genetic Loci , Genetic Variation , Humans , Sequence Alignment , Software
18.
Arch Clin Neuropsychol ; 39(2): 186-195, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-37565480

ABSTRACT

OBJECTIVES: Wiedemann-Steiner syndrome (WSS) is a neurogenetic disorder caused by heterozygous variants in KMT2A. Recent investigations suggest increased anxiety and behavior regulation challenges among those with WSS although the neurobehavioral phenotype remains largely unknown. This study aims to examine the pattern of and associations between executive functioning (EF) and behavior functioning among those with WSS. METHOD: This study involved utilizing caregiver-report inventories (Behavior Rating Inventory of Executive Function 2nd Edition, BRIEF-2; Adaptive Behavior Assessment 3rd Edition, ABAS-3; Strengths and Difficulties Questionnaire, SDQ) to assess day-to-day behavior functioning among those with WSS (N = 24; mean age = 10.68 years, SD = 3.19). Frequency of clinical elevations in daily difficulties in EF, adaptive behaviors, and behavior regulation were reported. Correlations and hierarchical linear regressions were used to determine the relationships between EF with behavior and adaptive functioning. RESULTS: Out of our sample, 63% met clinical levels of executive functioning difficulties on the BRIEF-2, and 75% with Hyperactivity and 54% with Emotional Problems on the SDQ. In addition, 33% were rated >2 SD below the normative mean in overall adaptive functioning on the ABAS-3. Elevated ratings in BRIEF-2 Shift, reflective of challenges with mental flexibility, predicted more Emotional Problems and accounted for 33.5% of its variance. More difficulties in Emotional Control were related to greater adaptive deficits, accounting for 33.3% of its variance. CONCLUSIONS: Those with WSS are at risk for EF deficits, hyperactivity, and emotional dysregulation. EF correlates with adaptive and affective behaviors, highlighting the promise of behavioral interventions to target cognitive flexibility, emotional awareness, and reactivity in this population.


Subject(s)
Cognitive Dysfunction , Executive Function , Humans , Child , Executive Function/physiology , Neuropsychological Tests , Adaptation, Psychological
19.
JCI Insight ; 9(1)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38015625

ABSTRACT

Weaver syndrome is a Mendelian disorder of the epigenetic machinery (MDEM) caused by germline pathogenic variants in EZH2, which encodes the predominant H3K27 methyltransferase and key enzymatic component of Polycomb repressive complex 2 (PRC2). Weaver syndrome is characterized by striking overgrowth and advanced bone age, intellectual disability, and distinctive facies. We generated a mouse model for the most common Weaver syndrome missense variant, EZH2 p.R684C. Ezh2R684C/R684C mouse embryonic fibroblasts (MEFs) showed global depletion of H3K27me3. Ezh2R684C/+ mice had abnormal bone parameters, indicative of skeletal overgrowth, and Ezh2R684C/+ osteoblasts showed increased osteogenic activity. RNA-Seq comparing osteoblasts differentiated from Ezh2R684C/+, and Ezh2+/+ BM-mesenchymal stem cells (BM-MSCs) indicated collective dysregulation of the BMP pathway and osteoblast differentiation. Inhibition of the opposing H3K27 demethylases KDM6A and KDM6B substantially reversed the excessive osteogenesis in Ezh2R684C/+ cells both at the transcriptional and phenotypic levels. This supports both the ideas that writers and erasers of histone marks exist in a fine balance to maintain epigenome state and that epigenetic modulating agents have therapeutic potential for the treatment of MDEMs.


Subject(s)
Fibroblasts , Osteogenesis , Animals , Mice , Osteogenesis/physiology , Fibroblasts/metabolism , Polycomb Repressive Complex 2 , Disease Models, Animal , Histone Demethylases
20.
J Magn Reson Imaging ; 37(4): 974-80, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23055421

ABSTRACT

Adenylosuccinate lyase (ADSL) deficiency is a rare inborn error of metabolism resulting in accumulation of metabolites including succinylaminoimidazole carboxamide riboside (SAICAr) and succinyladenosine (S-Ado) in the brain and other tissues. Patients with ADSL have progressive psychomotor retardation, neonatal seizures, global developmental delay, hypotonia, and autistic features, although variable clinical manifestations may make the initial diagnosis challenging. Two cases of the severe form of the disease are reported here: an 18-month-old boy with global developmental delay, intractable neonatal seizures, progressive cerebral atrophy, and marked hypomyelination, and a 3-month-old girl presenting with microcephaly, neonatal seizures, and marked psychomotor retardation. In both patients in vivo proton magnetic resonance spectroscopy (MRS) showed the presence of S-Ado signal at 8.3 ppm, consistent with a prior report. Interestingly, SAICAr signal was also detectable at 7.5 ppm in affected white matter, which has not been reported in vivo before. A novel splice-site mutation, c.IVS12 + 1/G > C, in the ADSL gene was identified in the second patient. Our findings confirm the utility of in vivo proton MRS in suggesting a specific diagnosis of ADSL deficiency, and also demonstrate an additional in vivo resonance (7.5 ppm) of SAICAr in the cases of severe disease.


Subject(s)
Brain/enzymology , Developmental Disabilities/diagnosis , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Spectroscopy/methods , Psychomotor Disorders/diagnosis , Purine-Pyrimidine Metabolism, Inborn Errors/diagnosis , Adenosine/analogs & derivatives , Adenosine/analysis , Adenylosuccinate Lyase/deficiency , Adenylosuccinate Lyase/genetics , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/analysis , Autistic Disorder , DNA Mutational Analysis , Developmental Disabilities/enzymology , Developmental Disabilities/genetics , Female , Humans , Infant , Male , Psychomotor Disorders/enzymology , Psychomotor Disorders/genetics , Purine-Pyrimidine Metabolism, Inborn Errors/enzymology , Purine-Pyrimidine Metabolism, Inborn Errors/genetics , Ribonucleosides/analysis
SELECTION OF CITATIONS
SEARCH DETAIL