Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Polymers (Basel) ; 15(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139906

ABSTRACT

Nanocomposites of cyanate ester resin (CER) filled with three different reactive amino-functionalized polyhedral oligomeric silsesquioxane (POSS) were synthesized and characterized. The addition of a small quantity (0.1 wt.%) of amino-POSS chemically grafted to the CER network led to the increasing thermal stability of the CER matrix by 12-15 °C, depending on the type of amino-POSS. A significant increase of the glass transition temperature, Tg (DSC data), and the temperature of α relaxation, Tα (DMTA data), by 45-55 °C of the CER matrix with loading of nanofillers was evidenced. CER/POSS films exhibited a higher storage modulus than that of neat CER in the temperature range investigated. It was evidenced that CER/aminopropylisobutyl (APIB)-POSS, CER/N-phenylaminopropyl (NPAP)-POSS, and CER/aminoethyl aminopropylisobutyl (AEAPIB)-POSS nanocomposites induced a more homogenous α relaxation phenomenon with higher Tα values and an enhanced nanocomposite elastic behavior. The value of the storage modulus, E', at 25 °C increased from 2.72 GPa for the pure CER matrix to 2.99-3.24 GPa for the nanocomposites with amino-functionalized POSS nanoparticles. Furthermore, CER/amino-POSS nanocomposites possessed a higher specific surface area, gas permeability (CO2, He), and diffusion coefficients (CO2) values than those for neat CER, due to an increasing free volume of the nanocomposites studied that is very important for their gas transport properties. Permeability grew by about 2 (He) and 3.5-4 times (CO2), respectively, and the diffusion coefficient of CO2 increased approximately twice for CER/amino-POSS nanocomposites in comparison with the neat CER network. The efficiency of amino-functionalized POSS in improving the thermal and transport properties of the CER/amino-POSS nanocomposites increased in a raw of reactive POSS containing one primary (APIB-POSS) < eight secondary (NPAP-POSS) < one secondary and one primary (AEAPIB-POSS) amino groups. APIB-POSS had the least strongly pronounced effect, since it could form covalent bonds with the CER network only by a reaction of one -NH2 group, while AEAPIB-POSS displayed the most highly marked effect, since it could easily be incorporated into the CER network via a reaction of -NH2 and -NH- groups with -O-C≡N groups from CER.

2.
Nanomaterials (Basel) ; 12(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35745379

ABSTRACT

In the blending process of the composites, the clustering of MWCNTs under high concentration leads to poor dispersion and difficult complexing with luminescent elements. Cyanate ester resins (CERs) have a brittle network structure when cured caused by a conjugation effect that forms a strong emission peak in the ultraviolet-visible region and quenches the luminescent elements of the fluorescent nanofillers. In this paper, by anchoring of the Eu complex (Eu(TTA)3Phen, ETP) on a surface of longitudinal split unzipped carbon nanotubes (uMWCNTs); fluorescent nanoparticles were prepared as ETP anchor unzipper carbon nanotubes (ETP-uCNTs). Dicyanate ester of bisphenol E (CER-E monomer) is cured to polycyanurate at a lower temperature to achieve a high conversion, promoting a uniform blend with ETP-uCNTs, providing the fluorescence environment with high color purity. Studies show the ETP-uCNTs solve the agglomeration of MWCNTs and improve the interface binding ability. Compared with the pure CER-E, the tensile strength, bending strength and impact strength of CER-E/0.8 wt.% ETP-uCNT hybrid nanocomposites are increased by 94.6%, 92.8% and 101.1%, respectively. The carbon residue rate of CER-E/ETP-uCNTs is up to 47.14% at 800 °C, the temperature of the maximum reaction rate decreases by 67.81 °C, and the partial absorption of ultraviolet light is realized between 200 and 400 nm.

3.
Materials (Basel) ; 14(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34361437

ABSTRACT

Cyanate ester resin (CER) is an excellent thermal stable polymer. However, its mechanical properties are not appropriate for its application, with brittle weakness, and it has poor functional properties, such as luminescence. This work innovatively combines the luminescence property and the improved mechanical properties with the inherent thermal property of cyanate ester. A novel nanocomposite, CER/uMWCNTs/Eu, with multi-functional properties, has been prepared. The results show that with the addition of 0.1 wt.% of uMWCNTs to the resin, the flexural strength and tensile strength increased 59.3% and 49.3%, respectively. As the curing process of the CER progresses, the injected luminescence signal becomes luminescence behind the visible (FBV). The luminescence intensity of CER/uMWCNTs/Eu was much stronger than that of CER/MWCNTs/Eu, and the luminescence lifetime of CER/MWCNTs/Eu and CER/uMWCNTs/Eu was 8.61 µs and 186.39 µs, respectively. FBV exhibited great potential in the embedment of photon quantum information. Therefore, it can be predicted that CER/uMWCNTs/Eu composites will not only have a wide range of applications in sensing, detection, and other aspects, but will also exhibit great potential in the embedding of photon quantum information.

4.
Nanoscale Res Lett ; 12(1): 126, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28235361

ABSTRACT

Novel nanoporous film materials of thermostable cyanate ester resins (CERs) were generated by polycyclotrimerization of dicyanate ester of bisphenol E in the presence of varying amounts (from 20 to 40 wt%) of an ionic liquid (IL), i.e., 1-heptylpyridinium tetrafluoroborate, followed by its quantitative extraction after complete CER network formation. The completion of CER formation and IL extraction was assessed using gel fraction content determination, FTIR, 1H NMR, and energy-dispersive X-ray spectroscopy (EDX). SEM and DSC-based thermoporometry analyses demonstrated the formation of nanoporous structures after IL removal from CER networks, thus showing the effective role of IL as a porogen. Pore sizes varied from ~20 to ~180 nm with an average pore diameter of around 45-60 nm depending on the initial IL content. The thermal stability of nanoporous CER-based films was investigated by thermogravimetric analysis.

5.
Nanoscale Res Lett ; 12(1): 305, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28449543

ABSTRACT

This contribution addresses the relationships between the structure and gas transport properties of nanoporous thermostable cyanate ester resins (CERs) derived from polycyclotrimerization of 1,1'-bis(4-cyanatophenyl)ethane in the presence of 30 or 50 wt% of inert high-boiling temperature porogens (i.e., dimethyl- or dibutyl phthalates), followed by their quantitative removal. The nanopores in the films obtained were generated via a chemically induced phase separation route with further porogen extraction from the densely crosslinked CERs. To ensure a total desorption of the porogen moieties from the networks, an additional short-term thermal annealing at 250 °C was performed. The structure and morphology of such nanoporous CER-based films were investigated by FTIR and SEM techniques, respectively. Further, the gas transport properties of CER films were analyzed after the different processing steps, and relationships between the material structure and the main gas transport parameters were established.

6.
Nanoscale Res Lett ; 10: 165, 2015.
Article in English | MEDLINE | ID: mdl-25977646

ABSTRACT

ABSTRACT: Thermostable nanocomposites based on densely cross-linked cyanate ester resins (CER), derived from bisphenol E and doped by 0.01 to 5 wt. % amino-functionalized 2D montmorillonite (MMT) nanoparticles, were synthesized and characterized using Fourier transform infrared (FTIR), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDXS), wide-angle X-ray diffraction (WAXD), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), far-infrared (Far-IR), and creep rate spectroscopy (CRS) techniques. It was revealed that ultra-low additives, e.g., 0.025 to 0.1 wt. %, of amino-MMT nanolayers covalently embedded into СER network exerted an anomalously large impact on its dynamics and properties resulting, in particular, in some suppression of dynamics, increasing the onset of glass transition temperature by 30° to 40° and twofold rise of modulus in temperature range from 20°C to 200°C. Contrarily, the effects became negligibly small or even negative at increased amino-MMT contents, especially at 2 and 5 wt. %. That could be explained by TEM/EDXS data displaying predominance of individual amino-MMT nanolayers and their thin (2 to 3 nanolayers) stacks over more thick tactoids (5 to 10 nanolayers) and the large amino-MMT aggregates (100 to 500 nm in thickness) reversing the composite structure produced with increasing of amino-MMT content within CER matrix. The revealed effect of ultra-low amino-MMT content testifies in favor of the idea about the extraordinarily enhanced long-range action of the 'constrained dynamics' effect in the case of densely cross-linked polymer networks. PACS: 82.35.Np Nanoparticles in polymers; 81.05.Qk Reinforced polymers and polymer-based composites; 81.07.Pr Organic-inorganic hybrid nanostructures.

SELECTION OF CITATIONS
SEARCH DETAIL