Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Sep Sci ; 42(16): 2687-2695, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31161698

ABSTRACT

As signal molecules, auxins play an important role in mediating plant growth. Due to serious interfering substances in plants, it is difficult to accurately detect auxins with traditional solid-phase extraction methods. To improve the selectivity of sample pretreatment, a novel molecularly imprinted polymer -coated solid-phase microextraction fiber, which could be coupled directly to high-performance liquid chromatography, was prepared with indole acetic acid as template molecule for the selective extraction of auxins. The factors influencing the polymer formation, such as polymerization solvent, cross-linker, and polymerization time, were investigated in detail to enhance the performance of indole acetic acid-molecularly imprinted polymer coating. The morphological and chemical stability of this molecularly imprinted polymer-coated fiber was characterized by scanning electron microscopy, infrared spectrometry, and thermal analysis. The extraction capacity of the molecularly imprinted polymer-coated solid-phase microextraction fiber was evaluated for the selective extraction of indole acetic acid and indole-3-pyruvic acid followed by high-performance liquid chromatography analysis. The linear range for indole acetic acid and indole-3-pyruvic acid was 1-100 µg/L and their detection limit was 0.5 µg/L. The method was applied to the simultaneous determination of two auxins in two kinds of tobacco (Nicotiana tabacum L and Nicotiana rustica L) samples, with recoveries range from 82.1 to 120.6%.


Subject(s)
Indoleacetic Acids/analysis , Molecular Imprinting , Nicotiana/chemistry , Polymers/chemistry , Solid Phase Microextraction , Chromatography, High Pressure Liquid
2.
Int J Biol Macromol ; 161: 1286-1295, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32693127

ABSTRACT

The development of environmental-friendly antibacterial agents with high efficiency and low cost has become the focus of attention. In this work, the Ag nanoparticles doped into chitosan (Ag NPs-CS) were synthesized by a green and facile method, and the samples were characterized by UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The antibacterial tests implied that Ag NPs-CS obtained from glucose (G-Ag NPs-CS) exhibited the excellent antimicrobial activities against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) microbes. Besides, the utilization of antibacterial agents in polymeric materials plays an significant role in healthy living. The aim is to impart the antibacterial properties and maintain/improve the mechanical properties. Therefore, the G-Ag NPs-CS with 5 wt% Ag was chosen as the optimal additive to endow polypropylene with antimicrobial activity via a simple melt blending method. The results demonstrated that the suppression of bacteria proliferation was enhanced with increasing the amount of antibacterial agent, and the microorganisms were almost killed when the content reached to 8 wt%. Meanwhile, the considerable improvement in elastic modulus and impact strength along with a slight decrease of elongation at break provided the evidence that Ag NPs-CS/PP nanocomposites were the promising candidate for practical applications.


Subject(s)
Anti-Bacterial Agents/chemistry , Chitosan/chemistry , Metal Nanoparticles/chemistry , Polypropylenes/chemistry , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Mechanical Phenomena , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , X-Ray Diffraction
3.
J Chromatogr A ; 1233: 1-7, 2012 Apr 13.
Article in English | MEDLINE | ID: mdl-22386059

ABSTRACT

In this paper, a convenient and self-assembled hollow fiber solvent-stir bar microextraction (HF-SSBME) device was developed, which could stir by itself. In the extraction process, the proposed device made the solvent "bar" not floating at the sample solution and exposing to air while organic solvents outside hollow fiber always wrapped with donor phase solvent, which reduced the vaporization of organic solvents. This design could improve the precisions and recoveries of experiments. For evaluating the device, seven anabolic steroids (prasterone, 5α-androstane-3α, 17ß-diol, methandriol, 19-norandrostenediol, androstenediol, methyltestosterone and methandienone) were used as model analytes and extraction conditions such as type and volume of organic solvents, agitation speed, extraction time, extraction temperature and salt addition were studied in detail. Under the optimum conditions (15 µL toluene, 40 °C, stirring at 750 rpm for 30 min with 1.5 g sodium chloride addition in 20.0 mL donor phase), the linear ranges of anabolic steroids were 0.25-200 ng mL(-1) with gas chromatography-mass spectrometry. The limits of detection were lower than 0.10 ng mL(-1). The recoveries and precisions in spiked urine and hair samples were between 73.97-93.56% and 2.18-4.47% (n=5). HF-SSBME method combined the intrinsical merits of hollow fiber with the superiority of the proposed self-stirring device which can be developed to two-phase, three-phase and in situ derivatization modes with wide prospect of application. Besides, the pedestal of this proposed device can be converted to fix stir bar in stir bar sorptive extraction (SBSE) method.


Subject(s)
Anabolic Agents/isolation & purification , Gas Chromatography-Mass Spectrometry/methods , Liquid Phase Microextraction/methods , Solvents/chemistry , Steroids/isolation & purification , Limit of Detection , Liquid Phase Microextraction/instrumentation , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL