Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Proc Natl Acad Sci U S A ; 120(17): e2217900120, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37068241

ABSTRACT

The United States is the world's largest oil/gas methane emitter according to current national reports. Reducing these emissions is a top priority in the US government's climate action plan. Here, we use a 2010 to 2019 high-resolution inversion of surface and satellite observations of atmospheric methane to quantify emission trends for individual oil/gas production regions in North America and relate them to production and infrastructure. We estimate a mean US oil/gas methane emission of 14.8 (12.4 to 16.5) Tg a-1 for 2010 to 2019, 70% higher than reported by the US Environmental Protection Agency. While emissions in Canada and Mexico decreased over the period, US emissions increased from 2010 to 2014, decreased until 2017, and rose again afterward. Increases were driven by the largest production regions (Permian, Anadarko, Marcellus), while emissions in the smaller production regions generally decreased. Much of the year-to-year emission variability can be explained by oil/gas production rates, active well counts, and new wells drilled, with the 2014 to 2017 decrease driven by reduction in new wells and the 2017 to 2019 surge driven by upswing of production. We find a steady decrease in the oil/gas methane intensity (emission per unit methane gas production) for almost all major US production regions. The mean US methane intensity decreased from 3.7% in 2010 to 2.5% in 2019. If the methane intensity for the oil/gas supply chain continues to decrease at this pace, we may expect a 32% decrease in US oil/gas emissions by 2030 despite projected increases in production.

2.
Environ Sci Technol ; 57(34): 12782-12793, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37596963

ABSTRACT

Summertime surface ozone in China has been increasing since 2013 despite the policy-driven reduction in fuel combustion emissions of nitrogen oxides (NOx). Here we examine the role of soil reactive nitrogen (Nr, including NOx and nitrous acid (HONO)) emissions in the 2013-2019 ozone increase over the North China Plain (NCP), using GEOS-Chem chemical transport model simulations. We update soil NOx emissions and add soil HONO emissions in GEOS-Chem based on observation-constrained parametrization schemes. The model estimates significant daily maximum 8 h average (MDA8) ozone enhancement from soil Nr emissions of 8.0 ppbv over the NCP and 5.5 ppbv over China in June-July 2019. We identify a strong competing effect between combustion and soil Nr sources on ozone production in the NCP region. We find that soil Nr emissions accelerate the 2013-2019 June-July ozone increase over the NCP by 3.0 ppbv. The increase in soil Nr ozone contribution, however, is not primarily driven by weather-induced increases in soil Nr emissions, but by the concurrent decreases in fuel combustion NOx emissions, which enhance ozone production efficiency from soil by pushing ozone production toward a more NOx-sensitive regime. Our results reveal an important indirect effect from fuel combustion NOx emission reduction on ozone trends by increasing ozone production from soil Nr emissions, highlighting the necessity to consider the interaction between anthropogenic and biogenic sources in ozone mitigation in the North China Plain.


Subject(s)
Models, Chemical , Ozone , China , Nitrogen , Soil
3.
J Environ Manage ; 303: 114210, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34871908

ABSTRACT

Quickly quantifying the PM2.5 or O3 response to their precursor emission changes is a key point for developing effective control policies. The polynomial function-based response surface model (pf-RSM) can rapidly predict the nonlinear response of PM2.5 and O3 to precursors, but has drawbacks of overload computation and marginal effects (relatively larger prediction errors under strict control scenarios). To improve the performance of pf-RSM, a novel self-adaptive RSM (SA-RSM) was proposed by integrating the machine learning-based stepwise regression for establishing robust models to increase the computational efficiency and the collinearity diagnosis for reducing marginal effects caused by overfitting. The pilot study case demonstrated that compared with pf-RSM, SA-RSM can effectively reduce the training number by 70% and 40% and the fitting time by 40% and 52%, and decrease the prediction error by 49% and 74% for PM2.5 and O3 predictions respectively; moreover, the isopleths of PM2.5 or O3 as a function of their precursors generated by SA-RSM were more similar to those derived by chemical transport model (CTM), after successfully addressing the marginal effect issue. With the improved computation efficiency and prediction performance, SA-RSM is expected as a better scientific tool for decision-makers to make sound PM2.5 and O3 control policies.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring , Machine Learning , Ozone/analysis , Particulate Matter/analysis , Pilot Projects
4.
J Environ Manage ; 268: 110650, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32510427

ABSTRACT

The nonlinear response of O3 to nitrogen oxides (NOx) and volatile organic compounds (VOC) is not conducive to accurately identify the various source contributions and O3-NOx-VOC relationships. An enhanced meta-modeling approach, polynomial functions based response surface modeling coupled with the sectoral linear fitting technique (pf-ERSM-SL), integrating a new differential method (DM), was proposed to break through the limitation. The pf-ERSM-SL with DM was applied for analysis of O3 formation regime and real-time source contributions in July and October 2015 over the Pearl River Delta Region (PRD) of Mainland China. According to evaluations, the pf-ERSM-SL with DM was proven to be effective in source apportionment when the traditional sensitivity analysis was unsuitable for deriving the source contributions in the nonlinear system. After diagnosing the O3-NOx-VOC relationships, O3 formation in most regions of the PRD was identified as a distinctive NOx-limited regime in July; in October, the initial VOC-limited regime was found at small emission reductions (less than 22-44%), but it will transit to NOx-limited when further reductions were implemented. Investigation of the source contributions suggested that NOx emissions were the dominated contributor when turning-off the anthropogenic emissions, occupying 85.41-94.90% and 52.60-75.37% of the peak O3 responses in July and October respectively in the receptor regions of the PRD; NOx emissions from the on-road mobile source (NOx_ORM) in Guangzhou (GZ), Dongguan&Shenzhen (DG&SZ) and Zhongshan (ZS) were identified as the main contributors. Consequently, the reinforced control of NOx_ORM is highly recommended to lower the ambient O3 in the PRD effectively.


Subject(s)
Air Pollutants , Ozone , China , Environmental Monitoring , Rivers
5.
J Air Waste Manag Assoc ; 64(4): 406-18, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24843912

ABSTRACT

UNLABELLED: This study focuses on the influences of a warm high-pressure meteorological system on aerosol pollutants, employing the simulations by the Models-3/CMAQ system and the observations collected during October 10-12, 2004, over the Pearl River Delta (PRD) region. The results show that the spatial distributions of air pollutants are generally circular near Guangzhou and Foshan, which are cities with high emissions rates. The primary pollutant is particulate matter (PM) over the PRD. MM5 shows reasonable performance for major meteorological variables (i.e., temperature, relative humidity, wind direction) with normalized mean biases (NMB) of 4.5-38.8% and for their time series. CMAQ can capture one peak of all air pollutant concentrations on October 11, but misses other peaks. The CMAQ model systematically underpredicts the mass concentrations of all air pollutants. Compared with chemical observations, SO2 and O3 are predicted well with a correlation coefficient of 0.70 and 0.65. PM2.5 and NO are significantly underpredicted with an NMB of 43% and 90%, respectively. The process analysis results show that the emission, dry deposition, horizontal transport, and vertical transport are four main processes affecting air pollutants. The contributions of each physical process are different for the various pollutants. The most important process for PM10 is dry deposition, and for NO(x) it is transport. The contributions of horizontal and vertical transport processes vary during the period, but these two processes mostly contribute to the removal of air pollutants at Guangzhou city, whose emissions are high. For this high-pressure case, the contributions of the various processes show high correlations in cities with the similar geographical attributes. According to the statistical results, cities in the PRD region are divided into four groups with different features. The contributions from local and nonlocal emission sources are discussed in different groups. IMPLICATIONS: The characteristics of aerosol pollution episodes are intensively studied in this work using the high-resolution modeling system MM5/SMOKE/CMAQ, with special efforts on examining the contributions of different physical and chemical processes to air concentrations for each city over the PRD region by a process analysis method, so as to provide a scientific basis for understanding the formation mechanism of regional aerosol pollution under the high-pressure system over PRD.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Models, Theoretical , Ozone/analysis , Particulate Matter/analysis , Atmosphere/chemistry , China , Humidity , Rivers , Temperature , Wind
6.
Sci Total Environ ; 927: 171874, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38537834

ABSTRACT

The planetary boundary layer (PBL) characteristics during ozone (O3) episodes in China have been extensively studied; however, knowledge of the impact of boundary layer jets (BLJs) on O3 vertical distribution is limited. This study conducted a field campaign from 1 to 8 December 2020 to examine the vertical structure of the O3 concentration and wind velocity within the boundary layer at two sites (Foshan: FS, Maoming: MM) in Guangdong. Utilising lidar observations and the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), distinct spatial distribution patterns of O3 over FS and MM influenced by BLJs were identified. The BLJs at both locations exhibited pronounced diurnal variations with a nocturnal maximum exceeding 11 m/s at a height of approximately 500 m. The nocturnal enhancement of BLJs resulted from inertial oscillations coupled with diurnal thermal forcing over sloping terrain. A stronger BLJ at FS induced an evident uplift of O3 and the prevailing northeasterly wind facilitated the transport of O3 in the nocturnal residual layer from FS to MM. After sunrise, surface heating and the development of the PBL caused the air mass with elevated O3 levels in the residual layer to descend to ground level. At MM, calm surface winds, a weaker BLJ at 500 m height, and strong downdrafts collectively contributed to a significant increase in surface O3 concentration in subsequent days. These findings contribute to our understanding of the interactions between BLJs and variations in surface air pollutant concentrations, thereby providing important insights for future regional emissions control measures.

7.
Sci Total Environ ; 950: 175326, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39117218

ABSTRACT

Secondary organic aerosol (SOA) accounts for a large fraction of fine particulate matter (PM2.5), but the lack of vertical observations of SOA in the urban boundary layer (UBL) limits a comprehensive understanding of its sources and formation mechanisms. In this study, PM2.5 samples were simultaneously collected at 3 m, 118 m, and 488 m on the Canton Tower in Guangzhou during winter. Typical SOA tracers, including oxidation products of isoprene (SOAI), monoterpene (SOAM), sesquiterpene (SOAS), and toluene (ASOA), were investigated alongside meteorological parameters and gaseous/particulate pollutants. Total concentrations of SOA tracers showed an increasing trend with height, with daytime levels exceeding nighttime levels. C5-alkene triols and 2-methylglyceric acid displayed a significant increase with height, potentially affected by nighttime chemistry in the residual layer, determining the overall vertical trend of SOAI tracers. Concentrations of later-generation SOAM (SOAM_S) tracers also increased with height, while those of first-generation SOAM (SOAM_F) tracers decreased, indicating relatively aged SOAM in the upper layers. SOAS and ASOA tracers exhibited higher enhancement under polluted conditions, likely impacted by biomass burning and anthropogenic emissions. The yields of SOAI tracers varied with temperature in the vertical profile. The formation of SOAM_F tracers was negatively correlated with relative humidity, liquid water content, and pH, affecting their vertical distributions. The effect of O3 on SOA formation enhanced significantly with height, influenced by air mass transport, and likely contributed to the higher yields of SOA in the upper layer. However, at ground level, SOA formation was primarily driven by high local emissions of both NOx and volatile organic compounds. We also observed the roles of SO2 in SOA generation, particularly at 118 m. This study demonstrates the vertical diurnal characteristics of SOA tracers in the UBL, highlighting the varying effects of meteorological conditions and anthropogenic pollutants on SOA formation at different heights.

8.
Environ Pollut ; 306: 119464, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35569620

ABSTRACT

In this study, the spatiotemporal variabilities and characteristics of ozone (O3) and fine particulate matter (PM2.5) were reconstructed, and the interaction between meteorological conditions and the co-occurrence of O3 and PM2.5 in Zhuhai, a city in the Pearl River Delta (China), was analysed. The vertical distributions of lower tropospheric O3, aerosol extinction coefficient, and wind velocity were measured using a ground-based LiDAR system. The diurnal variations in air pollutant concentrations and meteorological conditions at ground level were examined from 28 November to December 8, 2020 considering the weather conditions in Zhuhai. Heavy pollution episodes with increased concentrations of O3 and PM2.5 were observed from 6 to 7 December after a period of cold air invasion. The maximum hourly average concentrations of O3 and PM2.5 at the ground level reached up to 190 µg/m3, 98 µg/m3, respectively. The horizontal wind speed rapidly decreased to less than 2 m/s during the heavy pollution episodes driven by O3 and PM2.5, whereas the vertical wind velocity was dominated by the downdraught. When the large-scale synoptic winds were weak, a strengthening sea breeze in the afternoon could promote the landward propagation of warm marine air masses, and a lower surface wind speed was driven by the convergence of cold air from the north and warm air from the south. In turn, this increased the residence time of air pollutants and promoted their conversion to secondary pollutants. Regarding the pollution sources, the results indicated that the Pearl River Estuary represented a 'pool' of O3 and PM2.5 pollution. In addition, the contribution of regional pollutant transport could not be ignored when considering the accumulative increase in air pollution. Overall, the relatively weak synoptic winds, low mixing height, and high generation of pollution around Zhuhai collectively resulted in high concentrations of O3 and PM2.5.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Air Pollutants/analysis , Air Pollution/analysis , China , Environmental Monitoring/methods , Ozone/analysis , Particulate Matter/analysis , Rivers
9.
Environ Pollut ; 307: 119459, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35568288

ABSTRACT

Urban and regional ozone (O3) pollution is a public health concern and causes damage to ecosystems. Due to the diverse emission sources of O3 precursors and the complex interactions of air dispersion and chemistry, identifying the contributing sources of O3 pollution requires integrated analysis to guide emission reduction plans. In this study, the meteorological characteristics leading to O3 polluted days (in which the maximum daily 8-h average O3 concentration is higher than the China Class II National O3 Standard (160 µg/m3)) in Guangzhou (GZ, China) were analyzed based on data from 2019. The O3 formation regimes and source apportionments under various prevailing wind directions were evaluated using a Response Surface Modeling (RSM) approach. The results showed that O3 polluted days in 2019 could be classified into four types of synoptic patterns (i.e., cyclone, anticyclone, trough, and high pressure approaching to sea) and were strongly correlated with high ambient temperature, low relative humidity, low wind speed, variable prevailing wind directions. Additionally, the cyclone pattern strongly promoted O3 formation due to its peripheral subsidence. The O3 formation was nitrogen oxides (NOx)-limited under the northerly wind, while volatile organic compounds (VOC)-limited under other prevailing wind directions. Anthropogenic emissions contributed largely to the O3 formation (54-78%) under the westerly, southwesterly, easterly, southeasterly, or southerly wind, but only moderately (35-47%) under the northerly or northeasterly wind. Furthermore, as for anthropogenic contributions, local emission contributions were the largest (39-60%) regardless of prevailing wind directions, especially the local NOx contributions (19-43%); the dominant upwind regional emissions contributed 12-46% (e.g., contributions from Dongguan were 12-20% under the southeasterly wind). The emission control strategies for O3 polluted days should focus on local emission sources in conjunction with the emission reduction of upwind regional sources.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Air Pollutants/analysis , Air Pollution/analysis , China , Ecosystem , Environmental Monitoring/methods , Meteorology , Ozone/analysis
10.
Huan Jing Ke Xue ; 43(6): 2957-2965, 2022 Jun 08.
Article in Zh | MEDLINE | ID: mdl-35686765

ABSTRACT

Based on the tropical cyclone track data in the northwest Pacific Ocean from 2015 to 2020, meteorological observation data, and ozone concentration monitoring data in the Pearl River Delta (PRD), the impacts of four tropical cyclones, namely the westbound tropical cyclone (type A), East China Sea tropical cyclone (type B), offshore tropical cyclone (type C), and offshore tropical cyclone (type D), on ozone concentration in the PRD were analyzed. The results showed that:under the influence of the type A tropical cyclone, the risk of regional ozone concentration exceeding the standard exhibited little change. Under the influence of the type B tropical cyclone, the risk of ozone exceeding the standard in the PRD was obviously increased. Under the influence of the type C tropical cyclone, the risk of regional ozone exceeding the standard obviously increased, but the increase was weaker than that of the type B tropical cyclone. The type D tropical cyclone was far away from the Chinese mainland and had little influence on ozone concentration in the PRD. When the type A or type C tropical cyclones occurred, the average daily maximum 8-hour average ozone concentration (MDA8) in the PRD region increased by approximately 5 µg·m-3, and the ozone MDA8 in some cities may have decreased. When the type B tropical cyclone occurred, the regional ozone MDA8 increased by 19 µg·m-3 on average, and the ozone concentration in all cities increased significantly. Among them, the average increase in ozone MDA8 in Zhuhai and Jiangmen was relatively large, with an increase of greater than 20 µg·m-3. Generally speaking, the ozone concentration in cities in the western PRD was more affected by tropical cyclones. When the type B tropical cyclone occurred, solar radiation increased, sunshine duration lengthened, cloud cover decreased, air temperature rose, and relative humidity decreased in the PRD, all of which were beneficial to photochemical reactions. Meanwhile, downward flow increased in the boundary layer, and downward flow transported high-concentration ozone to the ground, which promoted the increase in ozone concentration on the ground. When type A or type C tropical cyclones occurred, the change in meteorological conditions was not entirely conducive to the increase in ozone concentration, and in some cases, even adverse meteorological conditions such as rainfall occurred, which led to the risk of regional ozone exceeding the standard being less than that of the type B tropical cyclone. Affected by tropical cyclones, sunshine hours and air temperature in western cities of the PRD increased more than those in eastern cities, which was more conducive to ozone generation.


Subject(s)
Air Pollutants , Cyclonic Storms , Ozone , Air Pollutants/analysis , Environmental Monitoring/methods , Ozone/analysis , Rivers
11.
Sci Total Environ ; 850: 157957, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35973534

ABSTRACT

The complexity and heterogeneity of urban land surfaces result in inconsistencies in near-surface winds, which in turn influence the diffusion and dispersion of air pollutants. In this study, we classified urban surface wind fields, quantified their steadiness, duration, and influence on air quality using hourly wind observations from 50 meteorological stations, as well as hourly PM2.5 and NO2 concentrations from 18 monitoring stations during 2017-2018 in Shenzhen, a mega city in southern China. We found that the K-means clustering technique was reliable for distinguishing surface wind patterns within the city. Urban surface-wind patterns greatly affected pollutant concentrations. When dominated by calm, northerly wind, high PM2.5/NO2 concentration episodes occurred more frequently than those during other surface wind patterns. The urban surface transport index (USTI) was used to quantify the steadiness of surface wind classes. High pollutant concentrations were present during both high wind speed periods with a large USTI, indicating external pollutant transport, and during low wind speed periods with a small USTI, indicating pollutant accumulation. The threshold durations for surface wind fields (TDSWF) was proposed to quantify the impacts of surface wind persistence on air quality. We found that poor air quality occurred during the first several hours of a dominant wind pattern, indicating that transitions between wind patterns should be a particular focus when assessing air-quality deterioration. USTI and TDSWF are potentially applicable to other urban areas, owing to their clear definitions and simple calculation. In combination with wind speeds, these indices are likely to improve air quality forecasting and strategic decisions on air pollution emergencies, based on long time series of multiple wind and pollutant concentration observations.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , China , Cities , Environmental Monitoring/methods , Nitrogen Dioxide , Particulate Matter/analysis , Wind
12.
Environ Pollut ; 289: 117860, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34332168

ABSTRACT

Quantification of source impacts and contributions is a key element for the design of effective air pollution control policies. In this study, O3 source impacts and contributions were comprehensively assessed over the Pearl River Delta (PRD) region of China using brute-force method (BFM), response surface modeling with BFM (RSM-BFM) and differential method (RSM-DM) respectively, high-order decoupled direct method (HDDM), and ozone source apportionment technology (OSAT). The multi-modeling comparison results indicated that under typical nonlinear atmospheric conditions during the O3 formation, BFM, RSM-BFM, and HDDM seemed to be appropriate for assessing the impact of single source emissions; however, the results of HDDM could deviate from those of BFM when the emission reduction ratio was higher than 50 %. Under multi-source control scenarios, the results of source contribution analyses obtained from RSM-DM and OSAT were reasonably well, but the performance of OSAT was limited by its capability in representing the nonlinearity of O3 response to emission reductions of its precursors, particularly NOx. The results of this pilot study in the PRD showed that the RSM-DM appeared to replicate the nonlinearity of O3 chemistry reasonably well (e.g., O3 disbenefits due to local NOx emission reductions in Guangzhou city). Based on the source contribution results, on-road mobile (including both NOx and VOC emissions) and industrial process (mainly VOC emissions) sources were identified as two major contribution sectors by both RSM-DM and OSAT, contributing an average of 31.5 % and 11.4 % (estimated by RSM-DM) and 29.2 % and 13.0 % (estimated by OSAT) respectively to O3 formation in 9 cities of the PRD. Therefore, the reinforced emission reductions on NOx and VOC from on-road mobile and industrial process sources in the central cities (i.e., Guangzhou, Foshan, Dongguan, Shenzhen, and Zhongshan) were suggested to effectively mitigate the ambient O3 levels in the PRD.


Subject(s)
Air Pollutants , Ozone , Air Pollutants/analysis , China , Environmental Monitoring , Ozone/analysis , Pilot Projects
13.
Huan Jing Ke Xue ; 42(1): 97-105, 2021 Jan 08.
Article in Zh | MEDLINE | ID: mdl-33372461

ABSTRACT

Based on the monitoring data of the Guangdong-Hong Kong-Macao Pearl River Delta Regional (PRD) Air Quality Monitoring Network from 2006 to 2019, the ozone trend in RRD was analyzed using the Mann-Kendall test method, Sen's slope method, and the Pettitt change point test. The results show that:① the average ozone concentration in the PRD has increased significantly from 2006 to 2019 (P<0.05), with an average growth rate of 0.80 µg·(m3·a)-1. After 2016, the rate of ozone increase has accelerated. ② The average annual ozone concentration in the central PRD increased significantly, while in the peripheral areas of the PRD, this is not obvious. Ozone increases significantly in summer but not in other seasons.③ From 2006 to 2019, the concentration of NO2 in the central PRD decreased remarkably, so the titration effect weakened and resulted in an increase in the ozone concentration. The concentration of NO2 in the marginal areas of the PRD has little change, so the ozone concentration in these areas has little change. ④ With the changes of VOCs and NO2 concentrations, the chemical sensitivity of O3 production in the PRD is changing. The VOC-limited regimes are continuously decreasing, and the mixed NOx-VOC-limited regimes and NOx-limited regimes are increasing. In order to deal with regional ozone pollution, the cooperative control of VOCs and NOx needs to strengthen.

14.
Sci Total Environ ; 722: 137701, 2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32208238

ABSTRACT

A scientifically sound integrated assessment modeling (IAM) system capable of providing optimized cost-benefit analysis is essential in effective air quality management and control strategy development. Yet scenario optimization for large-scale applications is limited by the computational expense of optimization over many control factors. In this study, a multi-pollutant cost-benefit optimization system based on a genetic algorithm (GA) in machine learning has been developed to provide cost-effective air quality control strategies for large-scale applications (e.g., solution spaces of ~1035). The method was demonstrated by providing optimal cost-benefit control pathways to attain air quality goals for fine particulate matter (PM2.5) and ozone (O3) over the Pearl River Delta (PRD) region of China. The GA was found to be >99% more efficient than the commonly used grid searching method while providing the same combination of optimized multi-pollutant control strategies. The GA method can therefore address air quality management problems that are intractable using the grid searching method. The annual attainment goals for PM2.5 (< 35 µg m-3) and O3 (< 80 ppb) can be achieved simultaneously over the PRD region and surrounding areas by reducing NOx (22%), volatile organic compounds (VOCs, 12%), and primary PM (30%) emissions. However, to attain stricter PM2.5 goals, SO2 reductions (> 9%) are needed as well. The estimated benefit-to-cost ratio of the optimal control strategy reached 17.7 in our application, demonstrating the value of multi-pollutant control for cost-effective air quality management in the PRD region.

15.
J Environ Manage ; 90(11): 3231-44, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19523748

ABSTRACT

Optical and chemical aerosol measurements were obtained from 2 to 31 July 2006 at an urban site in the metropolitan area of Guangzhou (China) as part of the Program of Regional Integrated Experiment of Air Quality over Pearl River Delta (PRIDE-PRD2006) to investigate aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing. During the PRIDE-PRD2006 campaign, the average contributions of ammonium sulfate, organic mass by carbon (OMC), elemental carbon (EC), and sea salt (SS) to total PM(2.5) mass were measured to be 36.5%, 5.7%, 27.1%, 7.8%, and 3.7%, respectively. Compared with the clean marine period, (NH(4))(2)SO(4), NH(4)NO(3), and OMC were all greatly enhanced (by up to 430%) during local haze periods via the accumulation of a secondary aerosol component. The OMC dominance increased when high levels of biomass burning influenced the measurement site while (NH(4))(2)SO(4) and OMC did when both biomass burning and industrial emissions influenced it. The effect of aerosol water content on the total light-extinction coefficient was estimated to be 34.2%, of which 25.8% was due to aerosol water in (NH(4))(2)SO(4), 5.1% that in NH(4)NO(3), and 3.3% that in SS. The average mass-scattering efficiency (MSE) of PM(10) particles was determined to be 2.2+/-0.6 and 4.6+/-1.7m(2)g(-1) under dry (RH<40%) and ambient conditions, respectively. The average single-scattering albedo (SSA) was 0.80+/-0.08 and 0.90+/-0.04 under dry and ambient conditions, respectively. Not only are the extinction and scattering coefficients greatly enhanced by aerosol water content, but MSE and SSA are also highly sensitive. It can be concluded that sulfate and carbonaceous aerosol, as well as aerosol water content, play important roles in the processes that determine visibility impairment and radiative forcing in the ambient atmosphere of the Guangzhou urban area.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Algorithms , Ammonium Sulfate/chemistry , China , Nitrates/chemistry , Particle Size , Particulate Matter/analysis
16.
Huan Jing Ke Xue ; 40(1): 55-66, 2019 Jan 08.
Article in Zh | MEDLINE | ID: mdl-30628259

ABSTRACT

Based on ozone monitoring and meteorological data from 2000 to 2015 in Hong Kong, the characteristics of ozone pollution and the influence of meteorological factors on the ozone pollution were analyzed. The results show that:① A seasonal variation of the ozone concentration in Hong Kong is notable:autumn > spring > winter > summer. Days of ozone exceeding the standard value are concentrated in summer and autumn and rarely occur in winter and spring. ② The annual mean ozone concentration of the maximum daily 8-h average (MDA8) in Hong Kong increases from 2000 to 2015, with an average growth rate of 0.77 µg·(m3·a)-1. The 90th percentile concentration of the ozone MDA8 also increases, with an average rate of 1.49 µg·(m3·a)-1. ③ Higher temperatures are necessary for ozone pollution in Hong Kong. The higher the temperature is, the more ozone pollution likely occurs. ④ In most cases, the ozone concentration is negatively correlated with the relative humidity. The higher the relative humidity is, the lower are the ozone and 90th percentile concentrations in Hong Kong. ⑤ When ozone pollution occurs in Hong Kong, prevailing winds tend to shift from northerly or easterly to westerly. In addition, with the increase of the wind speed, the average ozone concentration changes little, but the 90th percentile ozone concentration significantly decreases. ⑥ Precipitation and cloud cover are important factors affecting the ozone concentration. Weather conditions without or with little rain for many consecutive days are necessary for the occurrence of ozone pollution events. However, with the increase of the cloud cover, the average ozone and 90th percentile concentrations continue to decrease. ⑦ In the case of a total solar radiation ≤ 20 MJ·m-2 or sunshine duration ≤ 10 h, the ozone concentration is positively correlated with the solar radiation and sunshine duration. However, in the case of intense solar radiation (total solar radiation>20 MJ·m-2 or duration of sunshine>10 h), the ozone concentrations decrease with increasing solar radiation or duration because strong solar radiation often occurs in the background of sunny weather after rain. At the same time, southerly winds from the sea often prevail, making it difficult for ozone pollution to occur in Hong Kong. ⑧ Ozone excess days in Hong Kong are often accompanied by changes of a series of meteorological conditions including less rain on sunny days, stronger radiation, higher boundary layer height, lower relative humidity, smaller wind speeds, and higher temperatures. The end of the pollution process is accompanied by the opposite weather changes.

18.
Sci Total Environ ; 634: 1631-1644, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29691043

ABSTRACT

This article uses the WRF-CMAQ model to systematically study the source apportionment of PM2.5 under typical meteorological conditions in the dry season (November 2010) in the Pearl River Delta (PRD). According to the geographical location and the relative magnitude of pollutant emission, Guangdong Province is divided into eight subdomains for source apportionment study. The Brute-Force Method (BFM) method was implemented to simulate the contribution from different regions to the PM2.5 pollution in the PRD. Results show that the industrial sources accounted for the largest proportion. For emission species, the total amount of NOx and VOC in Guangdong Province, and NH3 and VOC in Hunan Province are relatively larger. In Guangdong Province, the emission of SO2, NOx and VOC in the PRD are relatively larger, and the NH3 emissions are higher outside the PRD. In northerly-controlled episodes, model simulations demonstrate that local emissions are important for PM2.5 pollution in Guangzhou and Foshan. Meanwhile, emissions from Dongguan and Huizhou (DH), and out of Guangdong Province (SW) are important contributors for PM2.5 pollution in Guangzhou. For PM2.5 pollution in Foshan, emissions in Guangzhou and DH are the major contributors. In addition, high contribution ratio from DH only occurs in severe pollution periods. In southerly-controlled episode, contribution from the southern PRD increases. Local emissions and emissions from Shenzhen, DH, Zhuhai-Jiangmen-Zhongshan (ZJZ) are the major contributors. Regional contribution to the chemical compositions of PM2.5 indicates that the sources of chemical components are similar to those of PM2.5. In particular, SO42- is mainly sourced from emissions out of Guangdong Province, while the NO3- and NH4+ are more linked to agricultural emissions.

19.
Environ Pollut ; 232: 55-64, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28958727

ABSTRACT

Data from an in situ monitoring network and five ozone sondes are analysed during August of 2012, and a high tropospheric ozone episode is observed around the 8th of AUG. The Community Multi-scale Air Quality (CMAQ) model and its process analysis tool were used to study factors and mechanisms for high ozone mixing ratio at different levels of ozone vertical profiles. A sensitive scenario without chemical initial and boundary conditions (ICBCs) from MOZART4-GEOS5 was applied to study the impact of stratosphere-troposphere exchange (STE) on vertical ozone. The simulation results indicated that the first high ozone peak near the tropopause was dominated by STE. Results from process analysis showed that: in the urban area, the second peak at approximately 2 km above ground height was mainly caused by local photochemical production. The third peak (near surface) was mainly caused by the upwind transportation from the suburban/rural areas; in the suburban/rural areas, local photochemical production of ozone dominated the high ozone mixing ratio from the surface to approximately 3 km height. Furthermore, the capability of indicators to distinguish O3-precursor sensitivity along the vertical O3 profiles was investigated. Two sensitive scenarios, which had cut 30% anthropogenic NOX or VOC emissions, showed that O3-precursor indicators, specifically the ratios of O3/NOy, H2O2/HNO3 or H2O2/NOZ, could partly distinguish the O3-precursor sensitivity between VOCs-sensitive and NOx-sensitive along the vertical profiles. In urban area, the O3-precursor relationship transferred from VOCs-sensitive within the boundary layer to NOx-sensitive at approximately 1-3 km above ground height, further confirming the dominant roles of transportation and photochemical production in high O3 peaks at the near-ground layer and 2 km above ground height, respectively.


Subject(s)
Air Pollutants/analysis , Atmosphere/chemistry , Environmental Monitoring , Ozone/analysis , Air Pollution/analysis , Hydrogen Peroxide
20.
Sci Total Environ ; 627: 1560-1571, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-30857117

ABSTRACT

Both the effects of aerosol hygroscopicity and mixing state on aerosol optical properties were analyzed using ground-based measurements and a Mie model in this study. The sized-resolved particle hygroscopic growth factor at RH = 90% (Gf(90%)) and the enhancement factor for the scattering coefficients (f(RH)sp) were measured by a self-constructed Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA) and two nephelometers in parallel (PNEPs) respectively from 22nd February to 18th March 2014 in the Pearl River Delta, China. In addition, the particle number size distribution (PNSD) and BC mass concentration (MBC) were measured simultaneously. During the observation period, the f(RH)sp increased sharply along with increasing RH (40%-85%) and the value of f(80%)sp was 1.77 ±â€¯0.18. The mean Gf(90%) for all particles are 1.44 (80 nm), 1.48 (110 nm), 1.52 (150 nm) and 1.55 (200 nm), and the mean Gf(90%) for more-hygroscopic particles are 1.58 (80 nm), 1.63 (110 nm), 1.66 (150 nm) and 1.67 (200 nm) respectively. Based on Gf, PNSD and MBC, the enhancement factor of the aerosol optical properties (extinction (f(RH)ep), scattering (f(RH)sp), backscattering (f(RH)hbsp), absorption (f(RH)absp), and hemispheric backscatter fraction (f(RH)hbsp)) were calculated under three aerosol mixing state assumptions. The results show that the calculated f(80%)sp values agreed well with the ones measured by PNEPs, illustrating that the Gf size distribution fittings are reasonable. The f(RH)ep, f(RH)sp and f(RH)hbsp increased along with increasing RH for three mixtures, while f(RH)HBF decreased. The f(RH)absp increased for the homogenously internal mixture, but remained stable for the external mixture. For the core-shell mixture, the f(RH)absp increased from RH = 0 to 75% and then decreased, due to a decrease of light entering the BC core. The enhancement factor of aerosol direct radiative forcing (f(RH)Fr) increased sharply as the RH elevated for the external mixing state. However, f(RH)Fr increased or decreased along with the elevated RH for the homogenously internal mixture and the core-shell mixture depending on initial value of the aerosol direct radiative forcing (∆Fr) in a dry condition.

SELECTION OF CITATIONS
SEARCH DETAIL