Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sensors (Basel) ; 23(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37420582

ABSTRACT

The von Neumann architecture with separate memory and processing presents a serious challenge in terms of device integration, power consumption, and real-time information processing. Inspired by the human brain that has highly parallel computing and adaptive learning capabilities, memtransistors are proposed to be developed in order to meet the requirement of artificial intelligence, which can continuously sense the objects, store and process the complex signal, and demonstrate an "all-in-one" low power array. The channel materials of memtransistors include a range of materials, such as two-dimensional (2D) materials, graphene, black phosphorus (BP), carbon nanotubes (CNT), and indium gallium zinc oxide (IGZO). Ferroelectric materials such as P(VDF-TrFE), chalcogenide (PZT), HfxZr1-xO2(HZO), In2Se3, and the electrolyte ion are used as the gate dielectric to mediate artificial synapses. In this review, emergent technology using memtransistors with different materials, diverse device fabrications to improve the integrated storage, and the calculation performance are demonstrated. The different neuromorphic behaviors and the corresponding mechanisms in various materials including organic materials and semiconductor materials are analyzed. Finally, the current challenges and future perspectives for the development of memtransistors in neuromorphic system applications are presented.


Subject(s)
Artificial Intelligence , Nanotubes, Carbon , Humans , Brain
2.
Sensors (Basel) ; 22(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35408095

ABSTRACT

This paper investigates a design framework for a class of distributed interconnected systems, where a fault diagnosis scheme and a cooperative fault-tolerant control scheme are included. First of all, fault detection observers are designed for the interconnected subsystems, and the detection results will be spread to all subsystems in the form of a broadcast. Then, to locate the faulty subsystem accurately, fault isolation observers are further designed for the alarming subsystems in turn with the aid of an adaptive fault estimation technique. Based on this, the fault estimation information is used to compensate for the residuals, and then isolation decision logic is conducted. Moreover, the cooperative fault-tolerant control unit, where state feedback and cooperative compensation are both utilized, is introduced to ensure the stability of the whole system. Finally, the simulation of intelligent unmanned vehicle platooning is adopted to demonstrate the applicability and effectiveness of the proposed design framework.

SELECTION OF CITATIONS
SEARCH DETAIL