Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Immunol ; 198(12): 4837-4845, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28500075

ABSTRACT

Deficiency in the membrane-bound complement regulators CD55 and CD59 exacerbates renal ischemia-reperfusion injury (IRI) in mouse models, but the effect of increasing CD55 and CD59 activity has not been examined. In this study, we investigated the impact of overexpression of human (h) CD55 ± hCD59 or treatment with soluble rhCD55 in a mouse model of renal IRI. Unilaterally nephrectomised mice were subjected to 18 (mild IRI) or 22 min (moderate IRI) warm renal ischemia, and analyzed 24 h after reperfusion for renal function (serum creatinine and urea), complement deposition (C3b/c and C9), and infiltration of neutrophils and macrophages. Transgenic mice expressing hCD55 alone were protected against mild renal IRI, with reduced creatinine and urea levels compared with wild type littermates. However, the renal function of the hCD55 mice was not preserved in the moderate IRI model, despite a reduction in C3b/c and C9 deposition and innate cell infiltration. Mice expressing both hCD55 and hCD59, on the other hand, were protected in the moderate IRI model, with significant reductions in all parameters measured. Wild type mice treated with rhCD55 immediately after reperfusion were also protected in the moderate IRI model. Thus, manipulation of CD55 activity to increase inhibition of the C3 and C5 convertases is protective against renal IRI, and the additional expression of hCD59, which regulates the terminal complement pathway, provides further protection. Therefore, anti-complement therapy using complement regulatory proteins may provide a potential clinical option for preventing tissue and organ damage in renal IRI.


Subject(s)
CD55 Antigens/genetics , CD55 Antigens/therapeutic use , CD59 Antigens/genetics , Kidney Diseases/therapy , Reperfusion Injury/therapy , Animals , CD55 Antigens/immunology , Complement Activation , Creatinine/blood , Humans , Kidney Diseases/immunology , Kidney Diseases/physiopathology , Macrophages/immunology , Mice , Mice, Transgenic , Neutrophils/immunology , Reperfusion Injury/immunology , Reperfusion Injury/physiopathology , Urea/blood
2.
Nephrology (Carlton) ; 18(1): 1-10, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23113949

ABSTRACT

Exosomes are membrane-bound vesicles of endosomal origin, present in a wide range of biological fluids, including blood and urine. They range between 30 and 100 nm in diameter, and consist of a limiting lipid bilayer, transmembrane proteins and a hydrophilic core containing proteins, mRNAs and microRNAs (miRNA). Exosomes can act as extracellular vehicles by which cells communicate, through the delivery of their functional cargo to recipient cells, with many important biological, physiological and pathological implications. The exosome release pathway contributes towards protein secretion, antigen presentation, pathogen transfer and cancer progression. Exosomes and exosome-mediated signalling have been implicated in disease processes such as atherosclerosis, calcification and kidney diseases. Circulating levels of exosomes and extracellular vesicles can be influenced by the progression of renal disease. Advances in methods for purification and analysis of exosomes are leading to potential diagnostic and therapeutic avenues for kidney diseases. This review will focus on biophysical properties and biogenesis of exosomes, their pathophysiological roles and their potential as biomarkers and therapeutics in kidney diseases.


Subject(s)
Exosomes/physiology , Kidney Diseases , Humans , Kidney/physiology , Kidney Diseases/diagnosis , Kidney Diseases/drug therapy
3.
Transplant Direct ; 2(7): e87, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27830181

ABSTRACT

BACKGROUND: Activins, members of the TGF-ß superfamily, are key drivers of inflammation and are thought to play a significant role in ischemia-reperfusion injury (IRI), a process inherent to renal transplantation that negatively impacts early and late allograft function. Follistatin (FS) is a protein that binds activin and inhibits its activity. This study examined the response of activin A and B in mice after renal IRI and the effect of exogenous FS in modulating the severity of renal injury. METHODS: Mice were treated with recombinant FS288 or vehicle before renal IRI surgery. Activin A, B, and FS levels in the serum and kidney, and renal injury parameters were measured at 3, 6, and 24 hours after reperfusion. RESULTS: Serum and kidney activin B levels were increased within 6 hours postrenal IRI, accompanied by renal injury-increased serum creatinine, messenger (m)RNA expression of kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL); endothelial activation-increased E-selectin mRNA; and systemic inflammation-increased serum levels of IL-6, monocyte chemotactic protein-1 and TNF-α. Further injury was potentiated by an upsurge in activin A by 24 hours, with further increases in serum creatinine, KIM-1 and NGAL mRNA expression. Follistatin treatment significantly reduced the level of serum activin B and subsequently blunted the increase in activin A. Renoprotection was evident with the attenuated rise in serum creatinine, KIM-1 and NGAL expression, tubular injury score, renal cell apoptosis, and serum IL-6 and monocyte chemotactic protein-1 levels. CONCLUSIONS: We propose that activin B initiates and activin A potentiates renal injury after IRI. Follistatin treatment, through binding and neutralizing the actions of activin B and subsequently activin A, reduced renal IRI by minimizing endothelial cell activation and dampening the systemic inflammatory response. These data support the potential clinical application of FS treatment to limit IRI during renal transplantation.

SELECTION OF CITATIONS
SEARCH DETAIL