Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 220
Filter
Add more filters

Publication year range
1.
Circ Res ; 133(5): 400-411, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37492967

ABSTRACT

BACKGROUND: FLNC (filamin C), a member of the filamin family predominantly expressed in striated muscles, plays a crucial role in bridging the cytoskeleton and ECM (extracellular matrix) in cardiomyocytes, thereby maintaining heart integrity and function. Although genetic variants within the N-terminal ABD (actin-binding domain) of FLNC have been identified in patients with cardiomyopathy, the precise contribution of the actin-binding capability to FLNC's function in mammalian hearts remains poorly understood. METHODS: We conducted in silico analysis of the 3-dimensional structure of mouse FLNC to identify key amino acid residues within the ABD that are essential for FLNC's actin-binding capacity. Subsequently, we performed coimmunoprecipitation and immunofluorescent assays to validate the in silico findings and assess the impact of these mutations on the interactions with other binding partners and the subcellular localization of FLNC. Additionally, we generated and analyzed knock-in mouse models in which the FLNC-actin interaction was completely disrupted by these mutations. RESULTS: Our findings revealed that F93A/L98E mutations completely disrupted FLNC-actin interaction while preserving FLNC's ability to interact with other binding partners ITGB1 (ß1 integrin) and γ-SAG (γ-sarcoglycan), as well as maintaining FLNC subcellular localization. Loss of FLNC-actin interaction in embryonic cardiomyocytes resulted in embryonic lethality and cardiac developmental defects, including ventricular wall malformation and reduced cardiomyocyte proliferation. Moreover, disruption of FLNC-actin interaction in adult cardiomyocytes led to severe dilated cardiomyopathy, enhanced lethality and dysregulation of key cytoskeleton components. CONCLUSIONS: Our data strongly support the crucial role of FLNC as a bridge between actin filaments and ECM through its interactions with actin, ITGB1, γ-SAG, and other associated proteins in cardiomyocytes. Disruption of FLN-actin interaction may result in detachment of actin filaments from the extracellular matrix, ultimately impairing normal cardiac development and function. These findings also provide insights into mechanisms underlying cardiomyopathy associated with genetic variants in FLNC ABD and other regions.


Subject(s)
Actins , Cardiomyopathies , Mice , Animals , Filamins/genetics , Filamins/metabolism , Actins/genetics , Actins/metabolism , Muscle, Skeletal/metabolism , Cardiomyopathies/genetics , Myocytes, Cardiac/metabolism , Mutation , Mammals
2.
BMC Cancer ; 24(1): 550, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693503

ABSTRACT

BACKGROUNDS: Long nonconding RNAs (lncRNAs) have been found to be a vital regulatory factor in the development process of human cancer, and could regarded as diagnostic or prognostic biomarkers for human cancers. Here, we aim to confirm the expression and molecular mechanism of RP11-171K16.5 (lnc171) in hepatocellular carcinoma (HCC). METHODS: Screening of differentially expressed lncRNAs by RNA sequencing. Expression level of gene was studied by quantitative real-time PCR (qRT-PCR). The effects of lnc171, mir-873-5p, and ethanol on migration and invasion activity of cells were studied used transwell assay, and luciferase reporter assay was used to confirm the binding site. RESULTS: RNA sequencing showed that lnc171 was markedly up-regulated in HCC. siRNA-mediated knockdown of lnc171 repressed the migration and invasion ability of HCC cells. Bioinformatic analysis, dual luciferase reporter assay, and qRT-PCR indicated that lnc171 interacted with mir-873-5p in HCC cells, and Zin-finger E-box binding homeobox (ZEB1) was a downstream target gene of mir-873-5p. In addition, lnc171 could enhance migration and invasion ability of HCC cells by up-regulating ZEB1 via sponging mir-873-5p. More interestingly, ethanol stimulation could up-regulate the increase of lnc171, thereby regulating the expression of competing endogenous RNA (ceRNA) network factors which lnc171 participated in HCC cells. CONCLUSIONS: Our date demonstrates that lnc171 was a responsive factor of ethanol, and plays a vital role in development of HCC via binding of mir-873-5p.


Subject(s)
Carcinoma, Hepatocellular , Cell Movement , Ethanol , Gene Expression Regulation, Neoplastic , Liver Neoplasms , MicroRNAs , RNA, Long Noncoding , Zinc Finger E-box-Binding Homeobox 1 , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Cell Movement/genetics , Ethanol/pharmacology , Cell Line, Tumor , Neoplasm Invasiveness/genetics
3.
Gastrointest Endosc ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38431107

ABSTRACT

BACKGROUND & AIMS: Nonampullary duodenal neuroendocrine tumors (NAD-NETs) are rare with limited evidence regarding endoscopic treatment. The study aimed to investigate the efficacy and safety of endoscopic resection of well-differentiated NAD-NETs and evaluate long-term outcomes, including local recurrence and metastasis. METHODS: A total of 78 patients with NAD-NETs who underwent endoscopic resection between January 2011 and August 2022 were included. The clinicopathologic characteristics and treatment outcomes were collected and analyzed. RESULTS: En bloc resection was achieved for 74 of the tumors (94.9%) and R0 resection was obtained in 68 of the tumors (87.2%). Univariate analysis identified tumors in the second part of the duodenum, tumor size ≥ 10 mm and muscularis propria invasion as risk factors for non-curative resection. Two patients with R1 resection (vertical margin involvement) and two patients with lymphovascular invasion underwent additional surgery. Four patients experienced adverse events (5.1%), including two cases of delayed bleeding and two cases of perforation, all successfully managed conservatively. During a median follow-up period of 62.6 months, recurrence and lymph node metastasis were only detected in one patient with R1 resection 3 months after the original procedure. CONCLUSION: Endoscopic resection is safe and effective and provides a favorable long-term outcome for patients with well-differentiated NAD-NETs without regional lymph node or distant metastasis.

4.
Biometrics ; 80(1)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38281769

ABSTRACT

The case-cohort study design provides a cost-effective study design for a large cohort study with competing risk outcomes. The proportional subdistribution hazards model is widely used to estimate direct covariate effects on the cumulative incidence function for competing risk data. In biomedical studies, left truncation often occurs and brings extra challenges to the analysis. Existing inverse probability weighting methods for case-cohort studies with competing risk data not only have not addressed left truncation, but also are inefficient in regression parameter estimation for fully observed covariates. We propose an augmented inverse probability-weighted estimating equation for left-truncated competing risk data to address these limitations of the current literature. We further propose a more efficient estimator when extra information from the other causes is available. The proposed estimators are consistent and asymptotically normally distributed. Simulation studies show that the proposed estimator is unbiased and leads to estimation efficiency gain in the regression parameter estimation. We analyze the Atherosclerosis Risk in Communities study data using the proposed methods.


Subject(s)
Cohort Studies , Humans , Proportional Hazards Models , Probability , Computer Simulation , Incidence
5.
Nature ; 557(7706): 522-525, 2018 05.
Article in English | MEDLINE | ID: mdl-29795253

ABSTRACT

Radio pulsars scintillate because their emission travels through the ionized interstellar medium along multiple paths, which interfere with each other. It has long been realized that, independent of their nature, the regions responsible for the scintillation could be used as 'interstellar lenses' to localize pulsar emission regions1,2. Most such lenses, however, resolve emission components only marginally, limiting results to statistical inferences and detections of small positional shifts3-5. As lenses situated close to their source offer better resolution, it should be easier to resolve emission regions of pulsars located in high-density environments such as supernova remnants 6 or binaries in which the pulsar's companion has an ionized outflow. Here we report observations of extreme plasma lensing in the 'black widow' pulsar, B1957+20, near the phase in its 9.2-hour orbit at which its emission is eclipsed by its companion's outflow7-9. During the lensing events, the observed radio flux is enhanced by factors of up to 70-80 at specific frequencies. The strongest events clearly resolve the emission regions: they affect the narrow main pulse and parts of the wider interpulse differently. We show that the events arise naturally from density fluctuations in the outer regions of the outflow, and we infer a resolution of our lenses that is comparable to the pulsar's radius, about 10 kilometres. Furthermore, the distinct frequency structures imparted by the lensing are reminiscent of what is observed for the repeating fast radio burst FRB 121102, providing observational support for the idea that this source is observed through, and thus at times strongly magnified by, plasma lenses 10 .

6.
Postgrad Med J ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656404

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) are involved in many key bioprocesses, including the occurrence and development of rheumatoid arthritis (RA). We aimed to analyze the association of genetic variants of long non-coding RNA LOC553103 and its peripheral blood mononuclear cells (PBMC) expression with RA. METHODS: We enrolled 457 RA patients and 551 healthy controls and conducted a case-control study to analyze the relationship between LOC553103 gene rs272879 and the susceptibility of RA by TaqMan single nucleotide polymorphism genotyping. Among them, we sampled 92 cases and 92 controls, respectively, to detect the PBMC level of LOC553103 using quantitative real-time polymerase chain reaction technology. We explored the association between LOC553103 rs272879 and its PBMC expression levels in 71 RA patients. Mann-Whitney, Chi-square, and Spearman correlation analysis were used for statistical analysis and P-value <.05 was considered statistically significant. RESULTS: The genotype frequency of LOC553103 rs272879 CC was increased, and CG was decreased in RA patients compared to the control group (χ2 = 6.772, P = .034). The LOC553103 expression level in PBMC of RA patients was downregulated compared to healthy control (Z = -4.497, P < .001). Moreover, negative correlations were observed between the PBMC level of LOC553103 and erythrocyte sedimentation rate (rs = -0.262, P = .018), white blood cell count (rs = -0.382, P = .004), platelet (rs = -0.293, P = .030), and disease activity score in 28 joints (rs = -0.271, P = .016) in RA patients. CONCLUSIONS: This study provides the first evidence supporting an association between LOC553103 gene polymorphisms and susceptibility of RA and a relationship of PBMC level of LOC553103 with clinical manifestations and laboratory indicators of RA patients.

7.
PLoS Genet ; 17(9): e1009785, 2021 09.
Article in English | MEDLINE | ID: mdl-34506481

ABSTRACT

Dysregulation of cardiac transcription programs has been identified in patients and families with heart failure, as well as those with morphological and functional forms of congenital heart defects. Mediator is a multi-subunit complex that plays a central role in transcription initiation by integrating regulatory signals from gene-specific transcriptional activators to RNA polymerase II (Pol II). Recently, Mediator subunit 30 (MED30), a metazoan specific Mediator subunit, has been associated with Langer-Giedion syndrome (LGS) Type II and Cornelia de Lange syndrome-4 (CDLS4), characterized by several abnormalities including congenital heart defects. A point mutation in MED30 has been identified in mouse and is associated with mitochondrial cardiomyopathy. Very recent structural analyses of Mediator revealed that MED30 localizes to the proximal Tail, anchoring Head and Tail modules, thus potentially influencing stability of the Mediator core. However, in vivo cellular and physiological roles of MED30 in maintaining Mediator core integrity remain to be tested. Here, we report that deletion of MED30 in embryonic or adult cardiomyocytes caused rapid development of cardiac defects and lethality. Importantly, cardiomyocyte specific ablation of MED30 destabilized Mediator core subunits, while the kinase module was preserved, demonstrating an essential role of MED30 in stability of the overall Mediator complex. RNAseq analyses of constitutive cardiomyocyte specific Med30 knockout (cKO) embryonic hearts and inducible cardiomyocyte specific Med30 knockout (icKO) adult cardiomyocytes further revealed critical transcription networks in cardiomyocytes controlled by Mediator. Taken together, our results demonstrated that MED30 is essential for Mediator stability and transcriptional networks in both developing and adult cardiomyocytes. Our results affirm the key role of proximal Tail modular subunits in maintaining core Mediator stability in vivo.


Subject(s)
Mediator Complex/metabolism , Myocytes, Cardiac/metabolism , Transcription, Genetic , Animals , Female , Male , Mediator Complex/genetics , Mediator Complex/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout
8.
Sensors (Basel) ; 24(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38400309

ABSTRACT

A lack of available information on heating, ventilation, and air-conditioning (HVAC) systems can affect the performance of data-driven fault-tolerant control (FTC) models. This study proposed an in situ selective incremental calibration (ISIC) strategy. Faults were introduced into the indoor air (Ttz1) thermostat and supply air temperature (Tsa) and chilled water supply air temperature (Tchws) sensors of a central air-conditioning system. The changes in the system performance after FTC were evaluated. Then, we considered the effects of the data quality, data volume, and variable number on the FTC results. For the Ttz1 thermostat and Tsa sensor, the system energy consumption was reduced by 2.98% and 3.72% with ISIC, respectively, and the predicted percentage dissatisfaction was reduced by 0.67% and 0.63%, respectively. Better FTC results were obtained using ISIC when the Ttz1 thermostat had low noise, a 7-day data volume, or sufficient variables and when the Tsa and Tchws sensors had low noise, a 14-day data volume, or limited variables.

9.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891858

ABSTRACT

Plant glutamate receptor-like channels (GLRs) are homologs of animal ionotropic glutamate receptors. GLRs are critical in various plant biological functions, yet their genomic features and functions in disease resistance remain largely unknown in many crop species. Here, we report the results on a thorough genome-wide study of the GLR family in oilseed rape (Brassica napus) and their role in resistance to the fungal pathogen Sclerotinia sclerotiorum. A total of 61 GLRs were identified in oilseed rape. They comprised three groups, as in Arabidopsis thaliana. Detailed computational analyses, including prediction of domain and motifs, cellular localization, cis-acting elements, PTM sites, and amino acid ligands and their binding pockets in BnGLR proteins, unveiled a set of group-specific characteristics of the BnGLR family, which included chromosomal distribution, motif composition, intron number and size, and methylation sites. Functional dissection employing virus-induced gene silencing of BnGLRs in oilseed rape and Arabidopsis mutants of BnGLR homologs demonstrated that BnGLR35/AtGLR2.5 positively, while BnGLR12/AtGLR1.2 and BnGLR53/AtGLR3.2 negatively, regulated plant resistance to S. sclerotiorum, indicating that GLR genes were differentially involved in this resistance. Our findings reveal the complex involvement of GLRs in B. napus resistance to S. sclerotiorum and provide clues for further functional characterization of BnGLRs.


Subject(s)
Ascomycota , Brassica napus , Disease Resistance , Plant Diseases , Plant Proteins , Receptors, Glutamate , Brassica napus/genetics , Brassica napus/microbiology , Ascomycota/pathogenicity , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Receptors, Glutamate/genetics , Receptors, Glutamate/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/microbiology , Genome-Wide Association Study , Multigene Family , Genome, Plant
10.
J Mol Cell Cardiol ; 175: 44-48, 2023 02.
Article in English | MEDLINE | ID: mdl-36539111

ABSTRACT

Mitochondrial dysfunction in heart triggers an integrated stress response (ISR) through phosphorylation of eIF2α and subsequent ATF4 activation. DAP3 Binding Cell Death Enhancer 1 (DELE1) is a mitochondrial protein recently found to be critical for mediating mitochondrial stress-triggered ISR (MSR)-induced eIF2α-ATF4 pathway activation. However, the specific role of DELE1 in heart at baseline or in response to mitochondrial stress remains largely unknown. In this study, we report that DELE1 is dispensable for cardiac development and function under baseline conditions. Conversely, DELE1 is essential for mediating an adaptive response to mitochondrial dysfunction-triggered stress in the heart, playing a protective role in mitochondrial cardiomyopathy.


Subject(s)
Cardiomyopathies , Mitochondria , Humans , Phosphorylation , Mitochondria/genetics , Mitochondria/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/metabolism
11.
Mol Med ; 29(1): 63, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37161357

ABSTRACT

BACKGROUND: Renal interstitial fibrosis (RIF) is a common pathway to end-stage renal disease regardless of the initial etiology. Currently, the molecular mechanisms for RIF remains not fully elucidated. Nuclear receptor subfamily 4 group A member 1(Nr4a1), a member of the NR4A subfamily of nuclear receptors, is a ligand-activated transcription factor. The role of Nr4a1 in RIF remains largely unknown. METHODS: In this study, we determined the role and action mechanism of Nr4a1 in RIF. We used unilateral ureteral obstruction (UUO) mice and transforming growth factor (TGF)-ß1-treated human renal proximal tubular epithelial cells (HK-2 cells) as in vivo and in vitro models of RIF. A specific Nr4a1 agonist Cytosporone B (Csn-B) was applied to activate Nr4a1 both in vivo and in vitro, and Nr4a1 small interfering RNA was applied in vitro. Renal pathological changes were evaluated by hematoxylin and eosin and Masson staining, and the expression of fibrotic proteins including fibronectin (Fn) and collagen-I (Col-I), and phosphorylated p38 MAPK was measure by immunohistochemical staining and western blot analysis. RESULTS: The results showed that Nr4a1 was upregulated in UUO mouse kidneys, and was positively correlated with the degree of interstitial kidney injury and the levels of fibrotic proteins. Csn-B treatment aggravated UUO-induced renal interstitial fibrosis, and induced p38 MAPK phosphorylation. In vitro, TGF-ß induced Nr4a1 expression, and Nr4a1 downregulation prevented TGF-ß1-induced expression of Fn and Col-I and the activation of p38 MAPK. Csn-B induced fibrotic proteins expression and p38 MAPK phosphorylation, and moreover Csn-B induced fibrotic proteins expression was abrogated by treatment with p38 MAPK inhibitor SB203580. We provided further evidence that Csn-B treatment promoted cytoplasmic accumulation of Nr4a1. CONCLUSION: The findings in the present study indicate that Nr4a1 promotes renal fibrosis potentially through activating p38 MAPK kinase.


Subject(s)
Kidney Diseases , Humans , Animals , Mice , Phosphorylation , Kidney Diseases/etiology , Phenylacetates , Kidney , Collagen Type I , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
12.
PLoS Genet ; 16(4): e1008739, 2020 04.
Article in English | MEDLINE | ID: mdl-32320395

ABSTRACT

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are a family of intracellular Ca2+ release channels located on the ER membrane, which in mammals consist of 3 different subtypes (IP3R1, IP3R2, and IP3R3) encoded by 3 genes, Itpr1, Itpr2, and Itpr3, respectively. Studies utilizing genetic knockout mouse models have demonstrated that IP3Rs are essential for embryonic survival in a redundant manner. Deletion of both IP3R1 and IP3R2 has been shown to cause cardiovascular defects and embryonic lethality. However, it remains unknown which cell types account for the cardiovascular defects in IP3R1 and IP3R2 double knockout (DKO) mice. In this study, we generated conditional IP3R1 and IP3R2 knockout mouse models with both genes deleted in specific cardiovascular cell lineages. Our results revealed that deletion of IP3R1 and IP3R2 in cardiomyocytes by TnT-Cre, in endothelial / hematopoietic cells by Tie2-Cre and Flk1-Cre, or in early precursors of the cardiovascular lineages by Mesp1-Cre, resulted in no phenotypes. This demonstrated that deletion of both IP3R genes in cardiovascular cell lineages cannot account for the cardiovascular defects and embryonic lethality observed in DKO mice. We then revisited and performed more detailed phenotypic analysis in DKO embryos, and found that DKO embryos developed cardiovascular defects including reduced size of aortas, enlarged cardiac chambers, as well as growth retardation at embryonic day (E) 9.5, but in varied degrees of severity. Interestingly, we also observed allantoic-placental defects including reduced sizes of umbilical vessels and reduced depth of placental labyrinth in DKO embryos, which could occur independently from other phenotypes in DKO embryos even without obvious growth retardation. Furthermore, deletion of both IP3R1 and IP3R2 by the epiblast-specific Meox2-Cre, which targets all the fetal tissues and extraembryonic mesoderm but not extraembryonic trophoblast cells, also resulted in embryonic lethality and similar allantoic-placental defects. Taken together, our results demonstrated that IP3R1 and IP3R2 play an essential and redundant role in maintaining the integrity of fetal-maternal connection and embryonic viability.


Subject(s)
Fetal Growth Retardation/genetics , Fetal Heart/metabolism , Heart Defects, Congenital/genetics , Inositol 1,4,5-Trisphosphate Receptors/genetics , Placenta/metabolism , Animals , Endothelial Progenitor Cells/metabolism , Female , Fetal Heart/embryology , Gene Deletion , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Placenta/embryology , Pregnancy
13.
Sensors (Basel) ; 23(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37447806

ABSTRACT

Due to energy constraints and people's increasing requirements for indoor thermal comfort, improving energy efficiency while ensuring thermal comfort has become the focus of research in the design and operation of HVAC systems. This study took office rooms with few people occupying them in Wuhan as the research object. The EnergyPlus-Fluent co-simulation method was used to study the impact of 12 forms of air distribution on the thermal environment and air-conditioner energy consumption. The results indicate that 3 m/s supply air velocity and 45° supply air angle are more suitable for the case model in this study. The EnergyPlus-Fluent co-simulation method used in this paper provides a reference for the study of indoor environments in offices with few people occupying them.


Subject(s)
Air Pollution, Indoor , Physiological Phenomena , Humans , Air Conditioning/methods , Computer Simulation
14.
Environ Geochem Health ; 45(7): 4087-4105, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36735155

ABSTRACT

Auto-inflammatory and autoimmune diseases of the musculoskeletal system can be perceived as a spectrum of rheumatic diseases, with the joints and connective tissues are eroded severely that progressively develop chronic inflammation and lesion. A wide range of risk factors represented by genetic and environmental factors have been uncovered by population-based surveys and experimental studies. Lately, the exposure to air pollution has been found to be potentially involved in the mechanisms of occurrence or development of such diseases, principally manifest in oxidative stress, local and systemic inflammation, and epigenetic modifications, as well as the mitochondrial dysfunction, which has been reported to participate in the intermediate links. The lungs might serve as a starting area of air pollutants, which would cause oxidative stress-induced bronchial-associated lymphoid tissue (iBALT) to further to influence T, B cells, and the secretion of pro-inflammatory cytokines. The binding of aromatic hydrocarbon receptor (AhR) to the corresponding contaminant ligands tends to regulate the reaction of Th17 and Tregs. Furthermore, air pollution components might spur on immune and inflammatory responses by damaging mitochondria that could interact with and exacerbate oxidative stress and pro-inflammatory cytokines. In this review, we focused on the association between air pollution and typical auto-inflammatory and autoimmune diseases of the musculoskeletal system, mainly including osteoarthritis (OA), rheumatoid arthritis (RA), spondyloarthritis (SpA) and juvenile idiopathic arthritis (JIA), and aim to collate the mechanisms involved and the potential channels. A complete summary and in-depth understanding of the autoimmune and inflammatory effects of air pollution exposure should hopefully contribute new perspectives on how to formulate better public health policies to alleviate the adverse health effects of air pollutants.


Subject(s)
Air Pollutants , Air Pollution , Autoimmune Diseases , Musculoskeletal System , Humans , Particulate Matter/analysis , Air Pollution/adverse effects , Autoimmune Diseases/chemically induced , Autoimmune Diseases/epidemiology , Air Pollutants/toxicity , Inflammation/chemically induced , Inflammation/epidemiology , Cytokines , Musculoskeletal System/chemistry
15.
Environ Geochem Health ; 45(6): 3317-3330, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36287357

ABSTRACT

Air pollution exposure is an important environmental risk factor involved in the development of systemic lupus erythematosus (SLE). This study was conducted to investigate the relationships between particulate matter (PM) air pollutants exposure and the risk of SLE admission in Xi'an, China. The records of SLE admission, air pollutants and meteorological data were retrieved from the First Affiliated Hospital of Xi'an Jiaotong University, the Xi'an Environmental Monitoring Station and China Meteorological Data Network, respectively. A distributed lagged nonlinear model combined with Poisson generalized linear regression was used to evaluate the effect of air pollution on SLE admission. Exposure-response curves showed positive associations of PM ≤ 2.5 (PM2.5) and 10 microns (PM10) in aerodynamic diameter exposures with the risk of SLE admission. Subgroup analyses showed that PM2.5 exposure was associated with the increased risk of SLE admission in women, age over 65 years old, and during the cold season, and PM10 exposure showed an increased risk of SLE in women and during the cold season, but additional tests did not observe the significant associations of PM2.5 and PM10 exposure with SLE admission between subgroups. In addition, null associations of carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2) with the risk of SLE admission were found. Our study indicates that PM2.5 and PM10 exposures have significant effects on the risk of SLE admission, and early measures should be taken for high PM2.5 and PM10 exposure to protect vulnerable populations, rational use of limited health care resources.


Subject(s)
Air Pollutants , Air Pollution , Lupus Erythematosus, Systemic , Humans , Female , Aged , Particulate Matter/analysis , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Hospitalization , China/epidemiology , Lupus Erythematosus, Systemic/chemically induced , Lupus Erythematosus, Systemic/epidemiology , Environmental Exposure/analysis
16.
Immunology ; 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36562137

ABSTRACT

Natural killer (NK) cells are known for their potent ability to kill stressed cells, whereas host cells infected with intra-cellular bacteria may also be benefit from the selective killing function of NK cells and survive. The mechanism of how NK cells protect host cells infected with intra-cellular bacteria is still unclear. Here, we discovered that decidual NK (dNK) cells cannot only eliminate intra-cellular bacteria which infected trophoblasts, but can also synthesize more lipids and transport lipids to trophoblasts to avoid their apoptosis. Mechanically, NK cells synthesize more lipids accompanied by increasing expression of apolipoprotein APOD. Lipids in NK cells can be delivered to trophoblast cells through APOD, maintaining adequate lipid droplet content and lipid metabolism homeostasis in trophoblasts. Blocking the APOD receptor LRP1 abolished lipid transport from NK cells to trophoblasts, and the reduction of lipid droplets caused by bacterial infection in trophoblast cells could not be restored, culminating in cell apoptosis. Our study provides new evidence for the immune surveillance and protective effect of NK cells on embryos during early pregnancy.

17.
Neoplasma ; 69(2): 303-310, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35068161

ABSTRACT

The release of circulating tumor cells (CTCs) into vasculature is an early event in the metastatic process and the detection of CTCs has been widely used clinically. In addition, cancer stem cells (CSCs) are the source of distant metastasis. However, the relationship between CTCs and CSCs in nasopharyngeal carcinoma (NPC) patients was largely unknown. A total of 93 NPC patients were enrolled in this study. The CTCs in the peripheral blood were detected. The expression of ALDH1A1 in the tumor tissues of the corresponding patients was detected using immunohistochemistry (IHC). The prognostic value of CTCs level and the correlation with the expression of ALDH1A1 was evaluated. Data showed that the detection of CTCs was positively correlated with metastasis (p<0.001). The positive detection of CTCs was also associated with poor overall survival (p=0.025). CTCs ≥2 demonstrated good specificity and sensitivity in predicting distant metastasis, while CTCs ≥8 demonstrated better specificity and sensitivity in predicting prognosis than CTCs ≥2. Furthermore, we found that there was a positive relationship between the detection of CTCs and the expression of ALDH1A1 (p=0.001). The prognosis analysis also demonstrated that high ALDH1A1 expression was correlated with poor overall survival (p=0.006). Our study demonstrated a positive correlation between the CTCs and the expression of CSCs, both were positively correlated with metastasis and poor prognosis. These results indicated that the CTCs might indirectly reflect the expression of CSCs.


Subject(s)
Nasopharyngeal Neoplasms , Neoplastic Cells, Circulating , Biomarkers, Tumor/metabolism , Humans , Nasopharyngeal Carcinoma/diagnosis , Nasopharyngeal Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , Neoplastic Stem Cells/pathology , Prognosis
18.
Sensors (Basel) ; 22(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35891028

ABSTRACT

Sensor drift fault calibration is essential to maintain the operation of heating, ventilation and air conditioning systems (HVAC) in buildings. Bayesian inference (BI) is becoming more and more popular as a commonly used sensor fault calibration method. However, this method focused mainly on sensor bias fault, and it could be difficult to calibrate drift fault that changes with time. Therefore, a dynamic calibration method for sensor drift fault of HVAC systems based on BI is developed. Taking the drift fault calibration of the chilled water supply temperature sensor of the chiller as an example, the performance of the proposed dynamic calibration method is evaluated. Results show that the combination of the Exponentially Weighted Moving-Average (EWMA) method with high detection accuracy and the proposed BI dynamic calibration method can effectively improve the calibration accuracy of drift fault, and the Mean Absolute Percentage Error (MAPE) value between the calibrated and normal data is less than 5%.

19.
Int J Mol Sci ; 23(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35055055

ABSTRACT

Dilated cardiomyopathy (DCM) is a life-threatening form of heart disease that is typically characterized by progressive thinning of the ventricular walls, chamber dilation, and systolic dysfunction. Multiple mutations in the gene encoding filamin C (FLNC), an actin-binding cytoskeletal protein in cardiomyocytes, have been found in patients with DCM. However, the mechanisms that lead to contractile impairment and DCM in patients with FLNC variants are poorly understood. To determine how FLNC regulates systolic force transmission and DCM remodeling, we used an inducible, cardiac-specific FLNC-knockout (icKO) model to produce a rapid onset of DCM in adult mice. Loss of FLNC reduced systolic force development in single cardiomyocytes and isolated papillary muscles but did not affect twitch kinetics or calcium transients. Electron and immunofluorescence microscopy showed significant defects in Z-disk alignment in icKO mice and altered myofilament lattice geometry. Moreover, a loss of FLNC induces a softening myocyte cortex and structural adaptations at the subcellular level that contribute to disrupted longitudinal force production during contraction. Spatially explicit computational models showed that these structural defects could be explained by a loss of inter-myofibril elastic coupling at the Z-disk. Our work identifies FLNC as a key regulator of the multiscale ultrastructure of cardiomyocytes and therefore plays an important role in maintaining systolic mechanotransmission pathways, the dysfunction of which may be key in driving progressive DCM.


Subject(s)
Biomarkers , Cardiomyopathy, Dilated/etiology , Cardiomyopathy, Dilated/metabolism , Filamins/deficiency , Genetic Predisposition to Disease , Myocytes, Cardiac/metabolism , Animals , Calcium/metabolism , Calcium Signaling , Cardiomyopathy, Dilated/diagnosis , Costameres/genetics , Costameres/metabolism , Disease Models, Animal , Female , Filamins/metabolism , Gene Expression , Genetic Association Studies , Male , Mice , Mice, Knockout , Models, Biological , Mutation , Myocardial Contraction/genetics
20.
Genesis ; 59(3): e23412, 2021 03.
Article in English | MEDLINE | ID: mdl-33547760

ABSTRACT

The atypical PKC (aPKC) subfamily constitutes PKCζ and PKCλ in mice, and both aPKC isoforms have been proposed to be involved in regulating various endothelial cell (EC) functions. However, the physiological function of aPKC in ECs during embryonic development has not been well understood. To address this question, we utilized Tie2-Cre to delete PKCλ alone (PKCλ-SKO) or both PKCλ and PKCζ (DKO) in ECs, and found that all DKO mice died at around the embryonic day 11.5 (E11.5), whereas a small proportion of PKCλ-SKO mice survived till birth. PKCλ-SKO embryos also exhibited less phenotypic severity than DKO embryos at E10.5 and E11.5, suggesting a potential compensatory role of PKCζ for PKCλ in embryonic ECs. We then focused on DKO embryos and investigated the effects of aPKC deficiency on embryonic vascular development. At E9.5, deletion of both aPKC isoforms reduced the diameters of vitelline artery and vein, and decreased branching from both vitelline vessels in yolk sac. Ablation of both aPKC isoforms also disrupted embryonic angiogenesis in head and trunk at the same stage, increasing apoptosis of both ECs and non-ECs. Taken together, our results demonstrated that aPKC in ECs plays an essential role in regulating cell apoptosis, angiogenesis, and embryonic survival.


Subject(s)
Angiogenesis Inducing Agents/metabolism , Embryonic Development , Endothelial Cells/metabolism , Protein Kinase C/physiology , Yolk Sac/embryology , Yolk Sac/metabolism , Animals , Apoptosis , Female , Gene Expression Regulation, Developmental , Mice , Pregnancy , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL