Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Photochem Photobiol Sci ; 22(8): 1809-1823, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37036621

ABSTRACT

A putative xanthorhodopsin-encoding gene, XR34, was found in the genome of the moderately halophilic gammaproteobacterium Salinivibrio socompensis S34, isolated from modern stromatolites found on the shore of Laguna Socompa (3570 m), Argentina Puna. XR-encoding genes were clustered together with genes encoding X-carotene, retinal (vitamin-A aldehyde), and carotenoid biosynthesis enzymes while the carotene ketolase gene critical for the salinixanthin antenna compound was absent. To identify its functional behavior, we herein overexpressed and characterized this intriguing microbial rhodopsin. Recombinant XR34 showed all the salient features of canonical microbial rhodopsin and covalently bound retinal as a functional chromophore with λmax = 561 nm (εmax ca. 60,000 M-1 cm-1). Two canonical counterions with pK values of around 6 and 3 were identified by pH titration of the recombinant protein. With a recovery time of approximately half an hour in the dark, XR34 shows light-dark adaptation shifting the absorption maximum from 551 to 561 nm. Laser-flash induced photochemistry at pH 9 (deprotonated primary counterion) identified a photocycle starting with a K-like intermediate, followed by an M-state (λmax ca. 400 nm, deprotonated Schiff base), and a final long wavelength-absorbing N- or O-like intermediate before returning to the parental 561 nm-state. Initiating the photocycle at pH 5 (protonated counterion) yields only bathochromic intermediates, due to the lacking capacity of the counterion to accept the Schiff base proton. Illumination of the membrane-embedded protein yielded a capacitive transport current. The presence of the M-intermediate under these conditions was demonstrated by a blue light-induced shunt process.


Subject(s)
Bacteriorhodopsins , Schiff Bases , Schiff Bases/chemistry , Carotenoids/metabolism , Retinaldehyde/chemistry , Rhodopsins, Microbial/genetics , Rhodopsins, Microbial/chemistry , Rhodopsins, Microbial/metabolism , Hydrogen-Ion Concentration
2.
Microb Ecol ; 86(2): 914-932, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36161499

ABSTRACT

Modern non-lithifying stromatolites on the shore of the volcanic lake Socompa (SST) in the Puna are affected by several extreme conditions. The present study assesses for the first time light utilization and functional metabolic stratification of SST on a millimeter scale through shotgun metagenomics. In addition, a scanning-electron-microscopy approach was used to explore the community. The analysis on SST unveiled the profile of a photosynthetic mat, with cyanobacteria not directly exposed to light, but placed just below a high-UV-resistant community. Calvin-Benson and 3-hydroxypropinate cycles for carbon fixation were abundant in upper, oxic layers, while the Wood-Ljungdahl pathway was dominant in the deeper anoxic strata. The high abundance of genes for UV-screening and oxidant-quenching pigments and CPF (photoreactivation) in the UV-stressed layers could indicate that the zone itself works as a UV shield. There is a remarkable density of sequences associated with photoreceptors in the first two layers. Also, genetic evidence of photosynthesis split in eukaryotic (layer 1) and prokaryotic (layer 2). Photoheterotrophic bacteria, aerobic photoautotrophic bacteria, and anaerobic photoautotrophic bacteria coexist by selectively absorbing different parts of the light spectrum (blue, red, and IR respectively) at different positions of the mat. Genes for oxygen, nitrogen, and sulfur metabolism account for the microelectrode chemical data and pigment measurements performed in previous publications. We also provide here an explanation for the vertical microbial mobility within the SST described previously. Finally, our study points to SST as ideal modern analogues of ancient ST.


Subject(s)
Altitude , Cyanobacteria , Cyanobacteria/genetics , Cyanobacteria/metabolism , Photosynthesis , Light , Lakes/microbiology
3.
Microb Ecol ; 87(1): 6, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38030916

ABSTRACT

High Andean wetlands, particularly those known as vegas or bofedales, are essential conservation ecosystems due to their significant contribution to ecosystem services. The soil microbial communities in these ecosystems play a crucial role in fundamental processes such as decomposition and nutrient cycling, sustaining life in the region. However, at present, these microbial communities are poorly understood. In order to contribute to this knowledge, we aimed to characterize and compare the microbial communities from soils of seven Argentine Puna vegas and to analyze their association with soil physicochemical characteristics. Proteobacteria (Gamma and Alphaproteobacteria) was the dominant phylum across all vegas, followed in abundance by Actinobacteriota, Desulfobacterota, and Chloroflexi. Furthermore, the abundance of specific bacterial families and genera varied significantly between the vegas; some of them can be associated with plant growth-promoting bacteria such as Rhodomicrobium in La Quebradita and Quebrada del Diablo, Bacillus in Antofalla and Las Quinuas. Laguna Negra showed no shared ASVs with abundance in genera such as Sphingomonas and Pseudonocardia. The studied vegas also differed in their soil physicochemical properties; however, associations between the composition of microbial communities with the edaphic parameters measured were not found. These results suggest that other environmental factors (e.g., geographic, climatic, and plant communities' characteristics) could determine soil microbial diversity patterns. Further investigations are needed to be focused on understanding the composition and function of microorganisms in the soil associated with specific vegetation types in these high-altitude wetlands, which will provide valuable insights into the ecological dynamics of these ecosystems for conservation strategies.


Subject(s)
Ecosystem , Microbiota , Humans , Wetlands , Soil/chemistry , Altitude , Bacteria/genetics , Soil Microbiology
4.
World J Microbiol Biotechnol ; 37(10): 166, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34463818

ABSTRACT

Central-Andean Ecosystems (between 2000 and 6000 m above sea level (masl) are typical arid-to-semiarid environments suffering from the highest total solar and ultraviolet-B radiation on the planet but displaying numerous salt flats and shallow lakes. Andean microbial ecosystems isolated from these environments are of exceptional biodiversity enduring multiple severe conditions. Furthermore, the polyextremophilic nature of the microbes in such ecosystems indicates the potential for biotechnological applications. Within this context, the study undertaken used genome mining, physiological and microscopical characterization to reveal the multiresistant profile of Nesterenkonia sp. Act20, an actinobacterium isolated from the soil surrounding Lake Socompa, Salta, Argentina (3570 masl). Ultravioet-B, desiccation, and copper assays revealed the strain's exceptional resistance to all these conditions. Act20's genome presented coding sequences involving resistance to antibiotics, low temperatures, ultraviolet radiation, arsenic, nutrient-limiting conditions, osmotic stress, low atmospheric-oxygen pressure, heavy-metal stress, and toxic fluoride and chlorite. Act20 can also synthesize proteins and natural products such as an insecticide, bacterial cellulose, ectoine, bacterial hemoglobin, and even antibiotics like colicin V and aurachin C. We also found numerous enzymes for animal- and vegetal-biomass degradation and applications in other industrial processes. The resilience of Act20 and its biotechnologic potential were thoroughly demonstrated in this work.


Subject(s)
Actinobacteria/genetics , Actinobacteria/isolation & purification , Soil/chemistry , Actinobacteria/chemistry , Actinobacteria/classification , Argentina , Biotechnology , Ecosystem , Genome, Bacterial , Genomics , Osmotic Pressure , Soil Microbiology
5.
Microb Ecol ; 76(3): 695-705, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29520450

ABSTRACT

Biofilms, microbial mats, and microbialites dwell under highly limiting conditions (high salinity, extreme aridity, pH, and elevated arsenic concentration) in the Andean Puna. Only recent pioneering studies have described the microbial diversity of different Altiplano lakes and revealed their unexpectedly diverse microbial communities. Arsenic metabolism is proposed to be an ancient mechanism to obtain energy by microorganisms. Members of Bacteria and Archaea are able to exploit arsenic as a bioenergetic substrate in either anaerobic arsenate respiration or chemolithotrophic growth on arsenite. Only six aioAB sequences coding for arsenite oxidase and three arrA sequences coding for arsenate reductase from haloarchaea were previously deposited in the NCBI database. However, no experimental data on their expression and function has been reported. Recently, our working group revealed the prevalence of haloarchaea in a red biofilm from Diamante Lake and microbial mat from Tebenquiche Lake using a metagenomics approach. Also, a surprisingly high abundance of genes used for anaerobic arsenate respiration (arr) and arsenite oxidation (aio) was detected in the Diamante's metagenome. In order to study in depth the role of arsenic in these haloarchaeal communities, in this work, we obtained 18 haloarchaea belonging to the Halorubrum genus, tolerant to arsenic. Furthermore, the identification and expression analysis of genes involved in obtaining energy from arsenic compounds (aio and arr) showed that aio and arr partial genes were detected in 11 isolates, and their expression was verified in two selected strains. Better growth of two isolates was obtained in presence of arsenic compared to control. Moreover, one of the isolates was able to oxidize As[III]. The confirmation of the oxidation of arsenic and the transcriptional expression of these genes by RT-PCR strongly support the hypothesis that the arsenic can be used in bioenergetics processes by the microorganisms flourishing in these environments.


Subject(s)
Archaea/isolation & purification , Archaea/metabolism , Arsenic/metabolism , Lakes/microbiology , Archaea/classification , Archaea/genetics , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Arsenate Reductases/genetics , Arsenate Reductases/metabolism , Arsenates/metabolism , Biofilms , Chemoautotrophic Growth , Energy Metabolism , Phylogeny , South America
6.
Environ Microbiol ; 19(8): 3186-3200, 2017 08.
Article in English | MEDLINE | ID: mdl-28574222

ABSTRACT

The identification of environmental barriers which govern species distribution is a fundamental concern in ecology. Even though salt was previously identified as a major transition boundary for micro- and macroorganisms alike, the salinities causing species turnover in protistan communities are unknown. We investigated 4.5 million high-quality protistan metabarcodes (V4 region of the SSU rDNA) obtained from 24 shallow salt ponds (salinities 4%-44%) from South America and Europe. Statistical analyses of protistan community profiles identified four salinity classes, which strongly selected for different protistan communities: 4-9%, 14-24%, 27-36% and 38-44%. The proportion of organisms unknown to science is highest in the 14-24% salinity class, showing that environments within this salinity range are an unappreciated reservoir of as yet undiscovered organisms. Distinct higher-rank taxon groups dominated in the four salinity classes in terms of diversity. As increasing salinities require different cellular responses to cope with salt, our results suggest that different evolutionary lineages of protists have evolved distinct haloadaptation strategies. Salinity appears to be a stronger selection factor for the structuring of protistan communities than geography. Yet, we find a higher degree of endemism in shallow salt ponds compared with less isolated ecosystems such as the open ocean. Thus, rules for biogeographic structuring of protistan communities are not universal, but depend on the ecosystem under consideration.


Subject(s)
Eukaryota/isolation & purification , Ponds/parasitology , Biological Evolution , Ecosystem , Eukaryota/classification , Eukaryota/genetics , Europe , Phylogeny , Ponds/chemistry , Salinity , South America
7.
Extremophiles ; 20(1): 19-25, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26475627

ABSTRACT

A Gram-negative, halophilic, heterotrophic, rod-shaped, non-spore-forming bacterium (SV525T) was isolated from the sediment of a hypersaline lake located at 4600 m above sea level (Laguna Vilama, Argentina). Strain SV525T was strictly aerobic and formed pink-to-magenta colonies. Growth occurred at 10­35 °C (optimum 25­30 °C), at pH levels 6.0­8.5 (optimum 7.0) and at NaCl concentrations of 7.5­25 % (w/v) with an optimum at 10­15 % (w/v). The strain required sodium and magnesium but not potassium ions for growth. Grows with tryptone, or Bacto Peptone as sole carbon and energy source and requires yeast extract for growth. It produced catalase and oxidase. The predominant ubiquinone was Q-8 and the major fatty acids comprised C18:1 ω7c, C16:0 and C18:0. The DNA G+C content was 60.4 mol% and its polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and a phosphoglycolipid. Phylogenetic analysis based on 16S rRNA gene indicated that strain SV525T belongs to the family Ectothiorhodospiraceae within the class Gammaproteobacteria. On the basis of phylogenetic and phenotypic data, SV525T represents a novel genus and species, for which the name Halopeptonella vilamensis gen. nov., sp. nov. is proposed. The type strain is SV525T (=DSM 21056T =JCM 16388T =NCIMB 14596T).


Subject(s)
Ectothiorhodospiraceae/isolation & purification , Phylogeny , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Composition , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Ectothiorhodospiraceae/classification , Ectothiorhodospiraceae/genetics , Ectothiorhodospiraceae/metabolism , RNA, Ribosomal, 16S/genetics
8.
Microb Ecol ; 71(1): 44-56, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26224164

ABSTRACT

The Atacama Desert has extreme environmental conditions that allow the development of unique microbial communities. The present paper reports the bacterial diversity of microbial mats and sediments and its mineralogical components. Some physicochemical conditions of the water surrounding these ecosystems have also been studied trying to determine their influence on the diversity of these communities. In that way, mats and sediments distributed among different hypersaline lakes located in salt flats of the Atacama Desert were subjected to massive parallel sequencing of the V4 region of the 16S rRNA genes of Bacteria. A higher diversity in sediment than in mat samples have been found. Lakes that harbor microbial mats have higher salinity than lakes where mats are absent. Proteobacteria and/or Bacteroidetes are the major phyla represented in all samples. An interesting item is the finding of a low proportion or absence of Cyanobacteria sequences in the ecosystems studied, suggesting the possibility that other groups may be playing an essential role as primary producers in these extreme environments. Additionally, the large proportion of 16S rRNA gene sequences that could not be classified at the level of phylum indicates potential new phyla present in these ecosystems.


Subject(s)
Bacteria/isolation & purification , Biodiversity , Geologic Sediments/microbiology , Lakes/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , DNA, Bacterial/genetics , Desert Climate , Lakes/analysis , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics
9.
Photochem Photobiol Sci ; 13(5): 739-50, 2014 May.
Article in English | MEDLINE | ID: mdl-24637630

ABSTRACT

UV-resistant Acinetobacter sp. Ver3 isolated from High-Altitude Andean Lakes (HAAL) in Argentinean Puna, one of the highest UV exposed ecosystems on Earth, showed efficient DNA photorepairing ability, coupled to highly efficient antioxidant enzyme activities in response to UV-B stress. We herein present the cloning, expression, and functional characterization of a cyclobutane pyrimidine dimer (CPD)-class I photolyase (Ver3Phr) from this extremophile to prove its involvement in the previously noted survival capability. Spectroscopy of the overexpressed and purified protein identified flavin adenine dinucleotide (FAD) and 5,10-methenyltetrahydrofolate (MTHF) as chromophore and antenna molecules, respectively. All functional analyses were performed in parallel with the ortholog E. coli photolyase. Whereas the E. coli enzyme showed the FAD chromophore as a mixture of oxidised and reduced states, the Ver3 chromophore always remained partly (including the semiquinone state) or fully reduced under all experimental conditions tested. Functional complementation of Ver3Phr in Phr(-)-RecA E. coli strains was assessed by traditional UFC counting and measurement of DNA bipyrimidine photoproducts by HPLC coupled with electrospray ionisation-tandem mass spectrometry (ESI-MS/MS) detection. The results identified strong photoreactivation ability in vivo of Ver3Phr while its nonphotoreactivation function, probably related with the stimulation of nucleotide excision repair (NER), was not as manifest as for EcPhr. Whether this is a question of the approach using an exogenous photolyase incorporated in a non-genuine host or a fundamental different behaviour of a novel enzyme from an exotic environment will need further studies.


Subject(s)
Acinetobacter/enzymology , Acinetobacter/radiation effects , Altitude , Deoxyribodipyrimidine Photo-Lyase/metabolism , Lakes/microbiology , Pyrimidine Dimers/metabolism , Ultraviolet Rays , Acinetobacter/isolation & purification , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/classification , Molecular Sequence Data , Phylogeny
10.
Microb Ecol ; 68(3): 483-94, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24859438

ABSTRACT

The Central Andes in northern Chile contains a large number of closed basins whose central depression is occupied by saline lakes and salt crusts (salars). One of these basins is Salar de Llamara (850 m a.s.l.), where large domed structures of seemingly evaporitic origin forming domes can be found. In this work, we performed a detailed microbial characterization of these domes. Mineralogical studies revealed gypsum (CaSO(4)) as a major component. Microbial communities associated to these structures were analysed by 454 16S rDNA amplicon sequencing and compared between winter and summer seasons. Bacteroidetes Proteobacteria and Planctomycetes remained as the main phylogenetic groups, an increased diversity was found in winter. Comparison of the upper air-exposed part and the lower water-submerged part of the domes in both seasons showed little variation in the upper zone, showing a predominance of Chromatiales (Gammaproteobacteria), Rhodospirillales (Alphaproteobacteria), and Sphingobacteriales (Bacteroidetes). However, the submerged part showed marked differences between seasons, being dominated by Proteobacteria (Alpha and Gamma) and Verrucomicrobia in summer, but with more diverse phyla found in winter. Even though not abundant by sequence, Cyanobacteria were visually identified by scanning electron microscopy (SEM), which also revealed the presence of diatoms. Photosynthetic pigments were detected by high-performance liquid chromatography, being more diverse on the upper photosynthetic layer. Finally, the system was compared with other endoevaporite, mats microbialite and Stromatolites microbial ecosystems, showing higher similitude with evaporitic ecosystems from Atacama and Guerrero Negro. This environment is of special interest for extremophile studies because microbial life develops associated to minerals in the driest desert all over the world. Nevertheless, it is endangered by mining activity associated to copper and lithium extraction; thus, its environmental protection preservation is strongly encouraged.


Subject(s)
Bacteria/classification , Calcium Sulfate , Desert Climate , Ecosystem , Bacteria/genetics , Biodiversity , Chile , DNA, Bacterial/genetics , Lakes/microbiology , Phylogeny , Pigments, Biological/analysis , RNA, Ribosomal, 16S/genetics , Seasons , Water/chemistry
11.
Extremophiles ; 17(3): 421-31, 2013 May.
Article in English | MEDLINE | ID: mdl-23525943

ABSTRACT

The North-Western part of Argentina is particularly rich in wetlands located in the Puna in an altitude between 3,600 and 4,600 m above sea level. Most of these high-altitude Andean lakes are inhospitable areas due to extreme habitat conditions such as high contents of toxic elements, particularly arsenic. Exiguobacterium sp. S17, isolated from stromatolites in Laguna Socompa, exhibited remarkable tolerance to high arsenic concentration, i.e., it tolerated arsenic concentration such as 10 mM of As(III) and 150 mM of As(V). A proteomics approach was conducted to reveal the mechanisms that provide the observed outstanding resistance of Exiguobacterium sp. S17 against arsenic. A comparative analysis of S17, exposed and unexposed to arsenic revealed 25 differentially expressed proteins. Identification of these proteins was performed by MALDI-TOF/MS revealing upregulation of proteins involved in energy metabolism, stress, transport, and in protein synthesis being expressed under arsenic stress. To our knowledge, this work represents the first proteomic study of arsenic tolerance in an Exiguobacterium strain.


Subject(s)
Adaptation, Physiological/genetics , Arsenic/pharmacology , Bacillales/metabolism , Proteomics , Altitude , Argentina , Bacillales/drug effects , Bacillales/genetics , Bacterial Proteins/metabolism , Ecosystem , Geologic Sediments/microbiology , Lakes/microbiology , Stress, Physiological
12.
Appl Microbiol Biotechnol ; 97(1): 63-75, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23138713

ABSTRACT

Micrococci are Gram-positive G + C-rich, nonmotile, nonspore-forming actinomycetous bacteria. Micrococcus comprises ten members, with Micrococcus luteus being the type species. Representatives of the genus play important roles in the biodegradation of xenobiotics, bioremediation processes, production of biotechnologically important enzymes or bioactive compounds, as test strains in biological assays for lysozyme and antibiotics, and as infective agents in immunocompromised humans. The first description of plasmids dates back approximately 28 years, when several extrachromosomal elements ranging in size from 1.5 to 30.2 kb were found in Micrococcus luteus. Up to the present, a number of circular plasmids conferring antibiotic resistance, the ability to degrade aromatic compounds, and osmotolerance are known, as well as cryptic elements with unidentified functions. Here, we review the Micrococcus extrachromosomal traits reported thus far including phages and the only quite recently described large linear extrachromosomal genetic elements, termed linear plasmids, which range in size from 75 kb (pJD12) to 110 kb (pLMA1) and which confer putative advantageous capabilities, such as antibiotic or heavy metal resistances (inferred from sequence analyses and curing experiments). The role of the extrachromosomal elements for the frequently proven ecological and biotechnological versatility of the genus will be addressed as well as their potential for the development and use as genetic tools.


Subject(s)
Interspersed Repetitive Sequences , Micrococcus/genetics , Bacteriophages/genetics , Biotechnology/methods , Metabolic Networks and Pathways/genetics , Plasmids
13.
J Hazard Mater ; 443(Pt B): 130243, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36308883

ABSTRACT

In this study, high-phosphorus beared microalgae was prepared by cultivating modification in high-phosphorus culture, and used for the enhanced Cd(II) biomineralization in soil. Batch experiment results showed that Chlorella sorokiniana FK was modified successfully in highly phosphate culture. Both intracellular P (Poly-P, 29.7 mg/kg) and surface P (phosphoryl based functional groups, 3.7 mol/kg) were greatly enhanced, and the Cd(II) removal capacity surged to 45.98 mg/g at equilibrium in the Langmuir simulation. The EXAFS analysis indicated that Cd tended to form a more stable bidentate complex (RPO4)2Cd when bounding with phosphate groups on the surface of the high-phosphorus microalgae. Moreover, high-phosphorus beared microalgae not only had higher immobilization amount of Cd(II), but also promoted immobilized Cd from adsorbed state to mineralized state. After high-phosphate cultured, increased density of P-related groups provided more adsorption sites, while the decomposition of intracellular Poly-P released phosphate ions into cell surface microenvironment, which combined and promoted the formation of Cd3(PO4)2/Cd(H2PO4)2 on cell surface. Cd-contaminated soil remediation experiments applying high-surface-phosphate beared microalgae further showed that more Cd stabilized as a residue fraction within 49 days. This study proposes that the high-phosphate culture strategy is a good way to improve the immobilization of heavy metals in soil induced by microorganisms.


Subject(s)
Chlorella , Microalgae , Soil Pollutants , Phosphorus , Cadmium/chemistry , Biomineralization , Soil/chemistry , Soil Pollutants/analysis , Phosphates/chemistry
14.
Sci Total Environ ; 876: 163208, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37011695

ABSTRACT

Non-ferrous metal mining activities are known to cause ecological irreversible damage in the tailings and surrounding areas as well as heavy metal (HM) contamination. The enhancement of Chlorella-montmorillonite interaction on the remediation of HM contaminated tailings was verified from the lab to the tailings in Daye City, Hubei Province, China. The results showed a positive correlation between the quantity of montmorillonite and the transformation of Pb and Cu into residual and carbonate-binding states, which resulted in a considerable decrease in the leaching ratio. The buildup of tailings fertility throughout this process benefited from montmorillonite's ability to buffer environmental changes and store water. This further offers a required environmental foundation for the rebuilding of microbial community and the growth of herbaceous plants. The structural equation model demonstrated that the interaction between Chlorella and montmorillonite directly affected the stability of HM, and that this interaction also had an impact on the accumulation of organic carbon, total nitrogen, and available phosphorus, which improved the immobilization of Pb, Cu, Cd, and Zn. This work made the first attempt to apply Chlorella-montmorillonite composite to in-situ tailings remediation, and proposed that the combination of inorganic clay minerals and organic microorganisms was an eco-friendly, long-lasting, and efficient method for immobilizing multiple-HMs in mining areas.


Subject(s)
Chlorella , Metals, Heavy , Soil Pollutants , Bentonite , Lead , Soil Pollutants/analysis , Metals, Heavy/analysis , Soil
15.
Orig Life Evol Biosph ; 42(2-3): 201-21, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22644565

ABSTRACT

High-Altitude Andean Lakes (HAAL) of the South American Andes are almost unexplored ecosystems of shallow lakes. The HAAL are recognized by a remarkably high UV exposure, strong changes in temperature and salinity, and a high content of toxic elements, especially arsenic. Being exposed to remarkably extreme conditions, they have been classified as model systems for the study of life on other planets. Particularly, Acinetobacter strains isolated from the HAAL were studied for their survival competence under strong UV-B irradiation. Clinical isolates, Acinetobacter baumannii and Acinetobacter johnsonii, served as reference material. Whereas the reference strains rapidly lost viability under UV-B irradiation, most HAAL-derived strains readily survived this exposure and showed less change in cell number after the treatment. Controls for DNA repair activity, comparing dark repair (DR) or photo repair (PR), gave evidence for the involvement of photolyases in the DNA repair. Comparative measurements by HPLC-mass spectrometry detected the number of photoproducts: bipyrimidine dimers under both PR and DR treatments were more efficiently repaired in the HAAL strains (up to 85 % PR and 38 % DR) than in the controls (31 % PR and zero DR ability). Analysis of cosmid-cloned total genomic DNA from the most effective DNA-photorepair strain (Ver3) yielded a gene (HQ443199) encoding a protein with clear photolyase signatures belonging to class I CPD-photolyases. Despite the relatively low sequence similarity of 41 % between the enzymes from Ver3 and from E. coli (PDB 1DNPA), a model-building approach revealed a high structural homology to the CPD-photolyase of E. coli.


Subject(s)
Acinetobacter/isolation & purification , Altitude , DNA Damage , DNA Repair , Ultraviolet Rays , Water Microbiology , Acinetobacter/classification , Acinetobacter/genetics , Acinetobacter/radiation effects , Base Sequence , DNA Primers , Fresh Water/microbiology , Polymerase Chain Reaction
16.
Biology (Basel) ; 11(6)2022 May 28.
Article in English | MEDLINE | ID: mdl-35741352

ABSTRACT

The Altiplano-Puna region is a high-altitude plateau in South America characterized by extreme conditions, including the highest UV incidence on Earth. The Laguna Negra is a hypersaline lake located in the Catamarca Province, northwestern Argentina, where stromatolites and other microbialites are found, and where life is mostly restricted to microbial mats. In this study, a particular microbial mat that covers the shore of the lake was explored, to unravel its layer-by-layer vertical structure in response to the environmental stressors therein. Microbial community composition was assessed by high-throughput 16S rRNA gene sequencing and pigment content analyses, complemented with microscopy tools to characterize its spatial arrangement within the mat. The top layer of the mat has a remarkable UV-tolerance feature, characterized by the presence of Deinococcus-Thermus and deinoxanthin, which might reflect a shielding strategy to cope with high UV radiation. Chloroflexi and Deltaproteobacteria were abundant in the second and third underlying layers, respectively. The bottom layer harbors copious Halanaerobiaeota. Subspherical aggregates composed of calcite, extracellular polymeric substances, abundant diatoms, and other microorganisms were observed all along the mat as the main structural component. This detailed study provides insights into the strategies of microbial communities to thrive under high UV radiation and hypersalinity in high-altitude lakes in the Altiplano-Puna region.

17.
J Bacteriol ; 193(14): 3686-7, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21602338

ABSTRACT

The high-altitude Andean lakes (HAAL) in the Argentinean Puna-high Andes region represent an almost unexplored ecosystem exposed to extreme conditions (high UV irradiation, hypersalinity, drastic temperature changes, desiccation, and high pH). Here we present the first genome sequence, a Sphingomonas sp., isolated from this extreme environment.


Subject(s)
Alkalies/analysis , Arsenic/analysis , Fresh Water/microbiology , Genome, Bacterial , Sodium Chloride/analysis , Sphingomonas/genetics , Sphingomonas/isolation & purification , Altitude , Argentina , Base Sequence , Ecosystem , Fresh Water/analysis , Molecular Sequence Data , Sphingomonas/classification
18.
Int J Syst Evol Microbiol ; 61(Pt 5): 1211-1217, 2011 May.
Article in English | MEDLINE | ID: mdl-20584819

ABSTRACT

A Gram-stain-negative, aerobic, rod-shaped, non-spore-forming bacterium (SV325(T)) was isolated from the sediment of a hypersaline lake located 4600 m above sea level (Laguna Vilama, Argentina). Strain SV325(T) formed cream to pink colonies, was motile and moderately halophilic, and tolerated NaCl concentrations of 1-25 % (w/v) with an optimum of 5-10 % (w/v). Growth occurred at 5-40 °C (optimum around 30 °C) and at pH 5.0-10.0 (optimum 7.0-8.0). The bacterium did not produce exopolysaccharides and stained positively for intracellular polyphosphate granules but not for poly-ß-hydroxyalkanoates. It produced catalase and oxidase, reduced nitrate to nitrite, hydrolysed gelatin, did not produce acids from sugars and utilized a limited range of substrates as carbon and energy sources: acetate, caproate, fumarate, dl-ß-hydroxybutyrate, malate, maleate, malonate and succinate. The predominant ubiquinones were Q-9 (92.5 %) and Q-8 (7.5 %), the major fatty acids were C(19 : 0) cyclo ω8c, C(16 : 0), C(17 : 0) cyclo and C(16 : 1)ω7c/iso-C(15:0) 2-OH, and the DNA G+C content was 55.0 mol%. Phylogenetic analyses based on the 16S rRNA gene indicated that strain SV325(T) belongs to the genus Halomonas in the class Gammaproteobacteria. Physiological and biochemical tests allowed phenotypic differentiation of strain SV325(T) from closely related species with validly published names. We therefore propose a novel species, Halomonas vilamensis sp. nov., with type strain SV325(T) ( = DSM 21020(T)  = LMG 24332(T)).


Subject(s)
Fresh Water/microbiology , Geologic Sediments/microbiology , Halomonas/classification , Halomonas/isolation & purification , Altitude , DNA, Bacterial/genetics , Fatty Acids/metabolism , Halomonas/genetics , Halomonas/metabolism , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sodium Chloride/metabolism
19.
Environ Microbiol Rep ; 13(5): 659-667, 2021 10.
Article in English | MEDLINE | ID: mdl-34089237

ABSTRACT

Microbialite-producing microorganisms that inhabit the Puna lakes are traditionally considered constituents of fragile microsystems, unable to resist important environmental variations. Nevertheless, this region has experienced significant climatic fluctuations during the Holocene, raising the unsolved issue on how microbialite-forming systems have been able to resist these changes. Turquesa lake, located within Quaternary Peinado lake-basin (Puna), faces a hydric crisis in the last decades, which modified their physicochemical conditions. However, there has been a rapid re-establishment of the microbialite systems once the main parameters were stabilized, which allowed the establishment of three new microbialite levels in the coast and paleo-coastline. The aim of this contribution is to report for the first time microbialite levels in Turquesa lake, providing a multiscale analysis, besides an accurate study of the physico-chemical context of the lake. This new record provided us the opportunity to demonstrate the short-term resilience capacity of these microbialite-producing microorganisms to climatic changes, offering a key approach to understand analogue processes throughout Earth history.


Subject(s)
Lakes , Lakes/chemistry
20.
PLoS One ; 16(2): e0246656, 2021.
Article in English | MEDLINE | ID: mdl-33561170

ABSTRACT

In this work, molecular diversity of two hypersaline microbial mats was compared by Whole Genome Shotgun (WGS) sequencing of environmental DNA from the mats. Brava and Tebenquiche are lakes in the Salar de Atacama, Chile, where microbial communities are growing in extreme conditions, including high salinity, high solar irradiance, and high levels of toxic metals and metaloids. Evaporation creates hypersaline conditions in these lakes and mineral precipitation is a characteristic geomicrobiological feature of these benthic ecosystems. The mat from Brava was more rich and diverse, with a higher number of different taxa and with species more evenly distributed. At the phylum level, Proteobacteria, Cyanobacteria, Chloroflexi, Bacteroidetes and Firmicutes were the most abundant, including ~75% of total sequences. At the genus level, the most abundant sequences were affilitated to anoxygenic phototropic and cyanobacterial genera. In Tebenquiche mats, Proteobacteria and Bacteroidetes covered ~70% of the sequences, and 13% of the sequences were affiliated to Salinibacter genus, thus addressing the lower diversity. Regardless of the differences at the taxonomic level, functionally the two mats were similar. Thus, similar roles could be fulfilled by different organisms. Carbon fixation through the Wood-Ljungdahl pathway was well represented in these datasets, and also in other mats from Andean lakes. In spite of presenting less taxonomic diversity, Tebenquiche mats showed increased abundance and variety of rhodopsin genes. Comparison with other metagenomes allowed identifying xantorhodopsins as hallmark genes not only from Brava and Tebenquiche mats, but also for other mats developing at high altitudes in similar environmental conditions.


Subject(s)
Carbon Cycle/physiology , Lakes/microbiology , Rhodopsin/metabolism , Bacteroidetes/genetics , Biodiversity , Chile , Cyanobacteria/genetics , Geologic Sediments/microbiology , Microbiota/genetics , Phylogeny , Proteobacteria/genetics , RNA, Ribosomal, 16S/genetics , Rhodopsin/genetics , Salinity , Whole Genome Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL