Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Nature ; 623(7988): 820-827, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938771

ABSTRACT

The majority of oncogenic drivers are intracellular proteins, constraining their immunotherapeutic targeting to mutated peptides (neoantigens) presented by individual human leukocyte antigen (HLA) allotypes1. However, most cancers have a modest mutational burden that is insufficient for generating responses using neoantigen-based therapies2,3. Neuroblastoma is a paediatric cancer that harbours few mutations and is instead driven by epigenetically deregulated transcriptional networks4. Here we show that the neuroblastoma immunopeptidome is enriched with peptides derived from proteins essential for tumorigenesis. We focused on targeting the unmutated peptide QYNPIRTTF discovered on HLA-A*24:02, which is derived from the neuroblastoma-dependency gene and master transcriptional regulator PHOX2B. To target QYNPIRTTF, we developed peptide-centric chimeric antigen receptors (PC-CARs) through a counter panning strategy using predicted potentially cross-reactive peptides. We further proposed that PC-CARs can recognize peptides on additional HLA allotypes when presenting a similar overall molecular surface. Informed by our computational modelling results, we show that PHOX2B PC-CARs also recognize QYNPIRTTF presented by HLA-A*23:01, the most common non-A2 allele in people with African ancestry. Finally, we demonstrate potent and specific killing of neuroblastoma cells expressing these HLAs in vitro and complete tumour regression in mice. These data suggest that PC-CARs have the potential to expand the pool of immunotherapeutic targets to include non-immunogenic intracellular oncoproteins and allow targeting through additional HLA allotypes in a clinical setting.


Subject(s)
Antigens, Neoplasm , Neuroblastoma , Oncogene Proteins , Peptides , Receptors, Chimeric Antigen , Animals , Humans , Mice , Africa/ethnology , Alleles , Amino Acid Sequence , Carcinogenesis , Cross Reactions , HLA-A Antigens/chemistry , HLA-A Antigens/immunology , Neuroblastoma/genetics , Neuroblastoma/immunology , Neuroblastoma/therapy , Oncogene Proteins/antagonists & inhibitors , Oncogene Proteins/immunology , Peptides/antagonists & inhibitors , Peptides/chemistry , Peptides/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/therapeutic use
2.
Nature ; 599(7885): 477-484, 2021 11.
Article in English | MEDLINE | ID: mdl-34732890

ABSTRACT

The majority of oncogenic drivers are intracellular proteins, thus constraining their immunotherapeutic targeting to mutated peptides (neoantigens) presented by individual human leukocyte antigen (HLA) allotypes1. However, most cancers have a modest mutational burden that is insufficient to generate responses using neoantigen-based therapies2,3. Neuroblastoma is a paediatric cancer that harbours few mutations and is instead driven by epigenetically deregulated transcriptional networks4. Here we show that the neuroblastoma immunopeptidome is enriched with peptides derived from proteins that are essential for tumourigenesis and focus on targeting the unmutated peptide QYNPIRTTF, discovered on HLA-A*24:02, which is derived from the neuroblastoma dependency gene and master transcriptional regulator PHOX2B. To target QYNPIRTTF, we developed peptide-centric chimeric antigen receptors (CARs) using a counter-panning strategy with predicted potentially cross-reactive peptides. We further hypothesized that peptide-centric CARs could recognize peptides on additional HLA allotypes when presented in a similar manner. Informed by computational modelling, we showed that PHOX2B peptide-centric CARs also recognize QYNPIRTTF presented by HLA-A*23:01 and the highly divergent HLA-B*14:02. Finally, we demonstrated potent and specific killing of neuroblastoma cells expressing these HLAs in vitro and complete tumour regression in mice. These data suggest that peptide-centric CARs have the potential to vastly expand the pool of immunotherapeutic targets to include non-immunogenic intracellular oncoproteins and widen the population of patients who would benefit from such therapy by breaking conventional HLA restriction.


Subject(s)
Antigens, Neoplasm/immunology , HLA Antigens/immunology , Immunotherapy , Neoplasms/immunology , Neoplasms/therapy , Oncogene Proteins/immunology , Receptors, Chimeric Antigen/immunology , Animals , Antigens, Neoplasm/metabolism , Cell Line , Cell Line, Tumor , Cross Reactions , Cross-Priming , Female , HLA Antigens/metabolism , Homeodomain Proteins/immunology , Homeodomain Proteins/metabolism , Humans , Interferon-gamma/immunology , Mice , Neoplasms/metabolism , Oncogene Proteins/antagonists & inhibitors , Oncogene Proteins/metabolism , T-Lymphocytes/immunology , Transcription Factors/immunology , Transcription Factors/metabolism
3.
N Engl J Med ; 385(10): 921-929, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34469647

ABSTRACT

Human papillomavirus (HPV) infections underlie a wide spectrum of both benign and malignant epithelial diseases. In this report, we describe the case of a young man who had encephalitis caused by herpes simplex virus during adolescence and currently presented with multiple recurrent skin and mucosal lesions caused by HPV. The patient was found to have a pathogenic germline mutation in the X-linked interleukin-2 receptor subunit gamma gene (IL2RG), which was somatically reverted in T cells but not in natural killer (NK) cells. Allogeneic hematopoietic-cell transplantation led to restoration of NK cytotoxicity, with normalization of the skin microbiome and persistent remission of all HPV-related diseases. NK cytotoxicity appears to play a role in containing HPV colonization and the ensuing HPV-related hyperplastic or dysplastic lesions. (Funded by the National Institutes of Health and the Herbert Irving Comprehensive Cancer Center Flow Cytometry Shared Resources.).


Subject(s)
Germ-Line Mutation , Hematopoietic Stem Cell Transplantation , Killer Cells, Natural/physiology , Papillomavirus Infections/therapy , Cytotoxicity, Immunologic , Encephalitis/virology , Female , Humans , Killer Cells, Natural/drug effects , Male , Microbiota/drug effects , Natural Killer T-Cells/physiology , Papillomaviridae , Papillomavirus Infections/genetics , Papillomavirus Infections/immunology , Pedigree , Skin/microbiology , Transplantation, Homologous , Young Adult
5.
BMC Bioinformatics ; 24(1): 303, 2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37516886

ABSTRACT

BACKGROUND: The growing power and ever decreasing cost of RNA sequencing (RNA-Seq) technologies have resulted in an explosion of RNA-Seq data production. Comparing gene expression values within RNA-Seq datasets is relatively easy for many interdisciplinary biomedical researchers; however, user-friendly software applications increase the ability of biologists to efficiently explore available datasets. RESULTS: Here, we describe ROGUE (RNA-Seq Ontology Graphic User Environment, https://marisshiny. RESEARCH: chop.edu/ROGUE/ ), a user-friendly R Shiny application that allows a biologist to perform differentially expressed gene analysis, gene ontology and pathway enrichment analysis, potential biomarker identification, and advanced statistical analyses. We use ROGUE to identify potential biomarkers and show unique enriched pathways between various immune cells. CONCLUSIONS: User-friendly tools for the analysis of next generation sequencing data, such as ROGUE, will allow biologists to efficiently explore their datasets, discover expression patterns, and advance their research by allowing them to develop and test hypotheses.


Subject(s)
Biomedical Research , Mobile Applications , High-Throughput Nucleotide Sequencing , Gene Ontology , Sequence Analysis, RNA
6.
Pediatr Blood Cancer ; 67(6): e28267, 2020 06.
Article in English | MEDLINE | ID: mdl-32307821

ABSTRACT

BACKGROUND: The treatment of high-risk neuroblastoma continues to present a formidable challenge to pediatric oncology. Previous studies have shown that Bromodomain and extraterminal (BET) inhibitors can inhibit MYCN expression and suppress MYCN-amplified neuroblastoma in vivo. Furthermore, alterations within RAS-MAPK (mitogen-activated protein kinase) signaling play significant roles in neuroblastoma initiation, maintenance, and relapse, and mitogen-activated extracellular signal-regulated kinase (MEK) inhibitors demonstrate efficacy in subsets of neuroblastoma preclinical models. Finally, hyperactivation of RAS-MAPK signaling has been shown to promote resistance to BET inhibitors. Therefore, we examined the antitumor efficacy of combined BET/MEK inhibition utilizing I-BET726 or I-BET762 and trametinib in high-risk neuroblastoma. PROCEDURE: Utilizing a panel of genomically annotated neuroblastoma cell line models, we investigated the in vitro effects of combined BET/MEK inhibition on cell proliferation and apoptosis. Furthermore, we evaluated the effects of combined inhibition in neuroblastoma xenograft models. RESULTS: Combined BET and MEK inhibition demonstrated synergistic effects on the growth and survival of a large panel of neuroblastoma cell lines through augmentation of apoptosis. A combination therapy slowed tumor growth in a non-MYCN-amplified, NRAS-mutated neuroblastoma xenograft model, but had no efficacy in an MYCN-amplified model harboring a loss-of-function mutation in NF1. CONCLUSIONS: Combinatorial BET and MEK inhibition was synergistic in the vast majority of neuroblastoma cell lines in the in vitro setting but showed limited antitumor activity in vivo. Collectively, these data do not support clinical development of this combination in high-risk neuroblastoma.


Subject(s)
Antineoplastic Agents/pharmacology , Benzodiazepines/pharmacology , MAP Kinase Kinase 1/antagonists & inhibitors , Neuroblastoma/drug therapy , Proteins/antagonists & inhibitors , Pyridones/pharmacology , Pyrimidinones/pharmacology , Animals , Apoptosis , Cell Proliferation , Female , Humans , Mice , Mice, SCID , Neuroblastoma/metabolism , Neuroblastoma/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
BMC Bioinformatics ; 18(1): 342, 2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28715997

ABSTRACT

BACKGROUND: Gene expression is regulated by transcription factors binding to specific target DNA sites. Understanding how and where transcription factors bind at genome scale represents an essential step toward our understanding of gene regulation networks. Previously we developed a structure-based method for prediction of transcription factor binding sites using an integrative energy function that combines a knowledge-based multibody potential and two atomic energy terms. While the method performs well, it is not computationally efficient due to the exponential increase in the number of binding sequences to be evaluated for longer binding sites. In this paper, we present an efficient pentamer algorithm by splitting DNA binding sequences into overlapping fragments along with a simplified integrative energy function for transcription factor binding site prediction. RESULTS: A DNA binding sequence is split into overlapping pentamers (5 base pairs) for calculating transcription factor-pentamer interaction energy. To combine the results from overlapping pentamer scores, we developed two methods, Kmer-Sum and PWM (Position Weight Matrix) stacking, for full-length binding motif prediction. Our results show that both Kmer-Sum and PWM stacking in the new pentamer approach along with a simplified integrative energy function improved transcription factor binding site prediction accuracy and dramatically reduced computation time, especially for longer binding sites. CONCLUSION: Our new fragment-based pentamer algorithm and simplified energy function improve both efficiency and accuracy. To our knowledge, this is the first fragment-based method for structure-based transcription factor binding sites prediction.


Subject(s)
Algorithms , Sequence Analysis, DNA/methods , Transcription Factors/metabolism , Binding Sites , DNA/chemistry , DNA/metabolism , Nucleotide Motifs , Position-Specific Scoring Matrices , Protein Binding
8.
Bioinformatics ; 32(12): i306-i313, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27307632

ABSTRACT

UNLABELLED: Transcription factors (TFs) regulate gene expression through binding to specific target DNA sites. Accurate annotation of transcription factor binding sites (TFBSs) at genome scale represents an essential step toward our understanding of gene regulation networks. In this article, we present a structure-based method for computational prediction of TFBSs using a novel, integrative energy (IE) function. The new energy function combines a multibody (MB) knowledge-based potential and two atomic energy terms (hydrogen bond and π interaction) that might not be accurately captured by the knowledge-based potential owing to the mean force nature and low count problem. We applied the new energy function to the TFBS prediction using a non-redundant dataset that consists of TFs from 12 different families. Our results show that the new IE function improves the prediction accuracy over the knowledge-based, statistical potentials, especially for homeodomain TFs, the second largest TF family in mammals. CONTACT: jguo4@uncc.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Transcription Factors/chemistry , Animals , Binding Sites , Computational Biology , DNA-Binding Proteins , Gene Expression Regulation , Protein Binding
9.
Cell Rep ; 43(3): 113927, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38451815

ABSTRACT

Neuroblastoma is the most common extracranial solid tumor of childhood. While MYCN and mutant anaplastic lymphoma kinase (ALKF1174L) cooperate in tumorigenesis, how ALK contributes to tumor formation remains unclear. Here, we used a human stem cell-based model of neuroblastoma. Mis-expression of ALKF1174L and MYCN resulted in shorter latency compared to MYCN alone. MYCN tumors resembled adrenergic, while ALK/MYCN tumors resembled mesenchymal, neuroblastoma. Transcriptomic analysis revealed enrichment in focal adhesion signaling, particularly the extracellular matrix genes POSTN and FN1 in ALK/MYCN tumors. Patients with ALK-mutant tumors similarly demonstrated elevated levels of POSTN and FN1. Knockdown of POSTN, but not FN1, delayed adhesion and suppressed proliferation of ALK/MYCN tumors. Furthermore, loss of POSTN reduced ALK-dependent activation of WNT signaling. Reciprocally, inhibition of the WNT pathway reduced expression of POSTN and growth of ALK/MYCN tumor cells. Thus, ALK drives neuroblastoma in part through a feedforward loop between POSTN and WNT signaling.


Subject(s)
Neuroblastoma , Receptor Protein-Tyrosine Kinases , Humans , Anaplastic Lymphoma Kinase/genetics , Cell Adhesion Molecules , Cell Line, Tumor , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/pathology , Receptor Protein-Tyrosine Kinases/metabolism , Wnt Signaling Pathway
10.
Sci Immunol ; 8(90): eadj5792, 2023 12.
Article in English | MEDLINE | ID: mdl-38039376

ABSTRACT

Peptide-centric chimeric antigen receptors (PC-CARs) recognize oncoprotein epitopes displayed by cell-surface human leukocyte antigens (HLAs) and offer a promising strategy for targeted cancer therapy. We have previously developed a PC-CAR targeting a neuroblastoma-associated PHOX2B peptide, leading to robust tumor cell lysis restricted by two common HLA allotypes. Here, we determine the 2.1-angstrom crystal structure of the PC-CAR-PHOX2B-HLA-A*24:02-ß2m complex, which reveals the basis for antigen-specific recognition through interactions with CAR complementarity-determining regions (CDRs). This PC-CAR adopts a diagonal docking mode, where interactions with both conserved and polymorphic HLA framework residues permit recognition of multiple HLA allotypes from the A9 serological cross-reactive group, covering a combined global population frequency of up to 46.7%. Biochemical binding assays, molecular dynamics simulations, and structural and functional analyses demonstrate that high-affinity PC-CAR recognition of cross-reactive pHLAs necessitates the presentation of a specific peptide backbone, where subtle structural adaptations of the peptide are critical for high-affinity complex formation, and CAR T cell killing. Our results provide a molecular blueprint for engineering CARs with optimal recognition of tumor-associated antigens in the context of different HLAs, while minimizing cross-reactivity with self-epitopes.


Subject(s)
Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Peptides/chemistry , Epitopes , Antigens, Neoplasm
11.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37292750

ABSTRACT

Peptide-Centric Chimeric Antigen Receptors (PC-CARs), which recognize oncoprotein epitopes displayed by human leukocyte antigens (HLAs) on the cell surface, offer a promising strategy for targeted cancer therapy 1 . We have previously developed a PC-CAR targeting a neuroblastoma- associated PHOX2B peptide, leading to robust tumor cell lysis restricted by two common HLA allotypes 2 . Here, we determine the 2.1 Å structure of the PC-CAR:PHOX2B/HLA-A*24:02/ß2m complex, which reveals the basis for antigen-specific recognition through interactions with CAR complementarity-determining regions (CDRs). The PC-CAR adopts a diagonal docking mode, where interactions with both conserved and polymorphic HLA framework residues permit recognition of multiple HLA allotypes from the A9 serological cross-reactivity group, covering a combined American population frequency of up to 25.2%. Comprehensive characterization using biochemical binding assays, molecular dynamics simulations, and structural and functional analyses demonstrate that high-affinity PC-CAR recognition of cross-reactive pHLAs necessitates the presentation of a specific peptide backbone, where subtle structural adaptations of the peptide are critical for high-affinity complex formation and CAR-T cell killing. Our results provide a molecular blueprint for engineering CARs with optimal recognition of tumor-associated antigens in the context of different HLAs, while minimizing cross-reactivity with self-epitopes.

12.
Cancer Res Commun ; 2(7): 616-623, 2022 07.
Article in English | MEDLINE | ID: mdl-36381237

ABSTRACT

Neuroblastomas have neuroendocrine features and often show similar gene expression patterns to small cell lung cancer including high expression of delta-like ligand 3 (DLL3). Here we determine the efficacy of rovalpituzumab tesirine (Rova-T), an antibody drug conjugated (ADC) with a pyrrolobenzodiazepine (PBD) dimer toxin targeting DLL3, in preclinical models of human neuroblastoma. We evaluated DLL3 expression in RNA sequencing data sets and performed immunohistochemistry (IHC) on neuroblastoma patient derived xenograft (PDX), human neuroblastoma primary tumor and normal childhood tissue microarrays (TMAs). We then evaluated the activity of Rova-T against 11 neuroblastoma PDX models using varying doses and schedules and compared anti-tumor activity to expression levels. DLL3 mRNA was differentially overexpressed in neuroblastoma at comparable levels to small cell lung cancer, as well as Wilms and rhabdoid tumors. DLL3 protein was robustly expressed across the neuroblastoma PDX array, but membranous staining was variable. The human neuroblastoma array, however, showed staining in only 44% of cases, whereas no significant staining was observed in the normal childhood tissue array. Rova-T showed a clear dose response effect across the 11 models tested, with a single dose inducing a complete or partial response in 3/11 and stable disease in another 3/11 models. No overt signs of toxicity were observed, and there was no treatment-related mortality. Strong membranous staining was necessary, but not sufficient, for anti-tumor activity. Rova-T has activity in a subset of neuroblastoma preclinical models, but heterogeneous expression in these models and the near absence of expression seen in human tumors suggests that any DLL3-targeting clinical trial should be only performed with a robust companion diagnostic to evaluate DLL3 expression for patient selection.


Subject(s)
Immunoconjugates , Lung Neoplasms , Neuroblastoma , Small Cell Lung Carcinoma , Humans , Child , Small Cell Lung Carcinoma/drug therapy , Lung Neoplasms/drug therapy , Ligands , Immunoconjugates/pharmacology , Neuroblastoma/drug therapy , Membrane Proteins/genetics , Intracellular Signaling Peptides and Proteins
13.
Commun Biol ; 5(1): 1260, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396952

ABSTRACT

Astatine-211-parthanatine ([211At]PTT) is an alpha-emitting radiopharmaceutical therapeutic that targets poly(adenosine-diphosphate-ribose) polymerase 1 (PARP1) in cancer cells. High-risk neuroblastomas exhibit among the highest PARP1 expression across solid tumors. In this study, we evaluated the efficacy of [211At]PTT using 11 patient-derived xenograft (PDX) mouse models of high-risk neuroblastoma, and assessed hematological and marrow toxicity in a CB57/BL6 healthy mouse model. We observed broad efficacy in PDX models treated with [211At]PTT at the maximum tolerated dose (MTD 36 MBq/kg/fraction x4) administered as a fractionated regimen. For the MTD, complete tumor response was observed in 81.8% (18 of 22) of tumors and the median event free survival was 72 days with 30% (6/20) of mice showing no measurable tumor >95 days. Reversible hematological and marrow toxicity was observed 72 hours post-treatment at the MTD, however full recovery was evident by 4 weeks post-therapy. These data support clinical development of [211At]PTT for high-risk neuroblastoma.


Subject(s)
Neuroblastoma , Humans , Animals , Mice , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Disease Models, Animal
14.
Nat Commun ; 12(1): 7222, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34893640

ABSTRACT

Multi-system Inflammatory Syndrome in Children (MIS-C) is a major complication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in pediatric patients. Weeks after an often mild or asymptomatic initial infection with SARS-CoV-2 children may present with a severe shock-like picture and marked inflammation. Children with MIS-C present with varying degrees of cardiovascular and hyperinflammatory symptoms. Here we perform a comprehensive analysis of the plasma proteome of more than 1400 proteins in children with SARS-CoV-2. We hypothesize that the proteome would reflect heterogeneity in hyperinflammation and vascular injury, and further identify pathogenic mediators of disease. We show that protein signatures demonstrate overlap between MIS-C, and the inflammatory syndromes macrophage activation syndrome (MAS) and thrombotic microangiopathy (TMA). We demonstrate that PLA2G2A is an important marker of MIS-C that associates with TMA. We find that IFNγ responses are dysregulated in MIS-C patients, and that IFNγ levels delineate clinical heterogeneity.


Subject(s)
COVID-19/complications , Endothelium, Vascular/physiopathology , Interferon-gamma/immunology , Proteome , Systemic Inflammatory Response Syndrome/pathology , Biomarkers , COVID-19/metabolism , COVID-19/pathology , Case-Control Studies , Chemokine CXCL9 , Child , Group II Phospholipases A2 , Humans , Inflammation , Interleukin-10 , Proteomics , Systemic Inflammatory Response Syndrome/metabolism , Vascular Diseases
15.
SSRN ; : 3575161, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32714112

ABSTRACT

Here we propose a vaccination strategy for SARS-CoV-2 based on identification of both highly conserved regions of the virus and newly acquired adaptations that are presented by MHC class I and II across the vast majority of the population, are highly dissimilar from the human proteome, and are predicted B cell epitopes. We present 65 peptide sequences that we expect to result in a safe and effective vaccine which can be rapidly tested in DNA, mRNA, or synthetic peptide constructs. These include epitopes that are contained within evolutionarily divergent regions of the spike protein reported to increase infectivity through increased binding to the ACE2 receptor, and within a novel furin cleavage site thought to increase membrane fusion. This vaccination strategy specifically targets unique vulnerabilities of SARS-CoV-2 and should engage a robust adaptive immune response in the vast majority of the human population.

16.
bioRxiv ; 2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32511347

ABSTRACT

Here we propose a vaccination strategy for SARS-CoV-2 based on identification of both highly conserved regions of the virus and newly acquired adaptations that are presented by MHC class I and II across the vast majority of the population, are highly dissimilar from the human proteome, and are predicted B cell epitopes. We present 65 peptide sequences that we expect to result in a safe and effective vaccine which can be rapidly tested in DNA, mRNA, or synthetic peptide constructs. These include epitopes that are contained within evolutionarily divergent regions of the spike protein reported to increase infectivity through increased binding to the ACE2 receptor, and within a novel furin cleavage site thought to increase membrane fusion. This vaccination strategy specifically targets unique vulnerabilities of SARS-CoV-2 and should engage a robust adaptive immune response in the vast majority of the human population.

17.
Cell Rep Med ; 1(3): 100036, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32835302

ABSTRACT

Here we propose a SARS-CoV-2 vaccine design concept based on identification of highly conserved regions of the viral genome and newly acquired adaptations, both predicted to generate epitopes presented on major histocompatibility complex (MHC) class I and II across the vast majority of the population. We further prioritize genomic regions that generate highly dissimilar peptides from the human proteome and are also predicted to produce B cell epitopes. We propose sixty-five 33-mer peptide sequences, a subset of which can be tested using DNA or mRNA delivery strategies. These include peptides that are contained within evolutionarily divergent regions of the spike protein reported to increase infectivity through increased binding to the ACE2 receptor and within a newly evolved furin cleavage site thought to increase membrane fusion. Validation and implementation of this vaccine concept could specifically target specific vulnerabilities of SARS-CoV-2 and should engage a robust adaptive immune response in the vast majority of the population.

18.
Front Immunol ; 11: 69, 2020.
Article in English | MEDLINE | ID: mdl-32256484

ABSTRACT

Despite recent advances in cancer immunotherapy, the process of immunoediting early in tumorigenesis remains obscure. Here, we employ a mathematical model that utilizes the Cancer Genome Atlas (TCGA) data to elucidate the contribution of individual mutations and HLA alleles to the immunoediting process. We find that common cancer mutations including BRAF-V600E and KRAS-G12D are predicted to bind none of the common HLA alleles, and are thus "immunogenically silent" in the human population. We identify regions of proteins that are not presented by HLA at a population scale, coinciding with frequently mutated hotspots in cancer, and other protein regions broadly presented across the population in which few mutations occur. We also find that 9/29 common HLA alleles contribute disproportionately to the immunoediting of early oncogenic mutations. These data provide insights into immune evasion of common driver mutations and a molecular basis for the association of particular HLA genotypes with cancer susceptibility.


Subject(s)
HLA Antigens/genetics , HLA Antigens/immunology , Neoplasms/immunology , Neoplasms/therapy , Alleles , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Humans , Immunogenicity, Vaccine , Immunotherapy , Mutation , Neoplasms/genetics
19.
Anal Biochem ; 394(1): 13-23, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19607800

ABSTRACT

The DNA of all organisms is persistently damaged by endogenous reactive molecules. Most of the single-base endogenous damage is repaired through the base excision repair (BER) pathway that is initiated by members of the DNA glycosylase family. Although the BER pathway is often considered to proceed through a common abasic site intermediate, emerging evidence indicates that there are likely distinct branches reflected by the multitude of chemically different 3' and 5' ends generated at the repair site. In this study, we have applied matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to the analysis of model DNA substrates acted on by recombinant glycosylases. We examine the chemical identity of several possible abasic site and nicked intermediates generated by monofunctional and bifunctional glycosylases. Our results suggest that the intermediate from endoIII/Nth might not be a simple beta-elimination product as described previously. On the basis of (18)O incorporation experiments, we propose a new mechanism for the endoIII/Nth family of glycosylases that may resolve several of the previous controversies. We further demonstrate that the use of an array of lesion-containing oligonucleotides can be used to rapidly examine the substrate preferences of a given glycosylase. Some of the lesions examined here can be acted on by more than one glycosylase, resulting in a spectrum of damaged intermediates for each lesion, suggesting that the sequence and coordination of repair activities that act on these lesions may influence the biological outcome of damage repair.


Subject(s)
DNA Glycosylases/metabolism , Base Sequence , DNA Damage , DNA Glycosylases/analysis , DNA Repair , Electrophoresis, Polyacrylamide Gel , Humans , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/genetics , Oligodeoxyribonucleotides/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Substrate Specificity , Uracil-DNA Glycosidase/metabolism
20.
Cancer Res ; 79(24): 6204-6214, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31672841

ABSTRACT

Relapsed neuroblastomas are enriched with activating mutations of the RAS-MAPK signaling pathway. The MEK1/2 inhibitor trametinib delays tumor growth but does not sustain regression in neuroblastoma preclinical models. Recent studies have implicated the Hippo pathway transcriptional coactivator protein YAP1 as an additional driver of relapsed neuroblastomas, as well as a mediator of trametinib resistance in other cancers. Here, we used a highly annotated set of high-risk neuroblastoma cellular models to modulate YAP1 expression and RAS pathway activation to test whether increased YAP1 transcriptional activity is a mechanism of MEK1/2 inhibition resistance in RAS-driven neuroblastomas. In NLF (biallelic NF1 inactivation) and SK-N-AS (NRAS Q61K) cell lines, trametinib caused a near-complete translocation of YAP1 protein into the nucleus. YAP1 depletion sensitized neuroblastoma cells to trametinib, while overexpression of constitutively active YAP1 protein induced trametinib resistance. Mechanistically, significant enhancement of G1-S cell-cycle arrest, mediated by depletion of MYC/MYCN and E2F transcriptional output, sensitized RAS-driven neuroblastomas to trametinib following YAP1 deletion. These findings underscore the importance of YAP activity in response to trametinib in RAS-driven neuroblastomas, as well as the potential for targeting YAP in a trametinib combination. SIGNIFICANCE: High-risk neuroblastomas with hyperactivated RAS signaling escape the selective pressure of MEK inhibition via YAP1-mediated transcriptional reprogramming and may be sensitive to combination therapies targeting both YAP1 and MEK.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Neuroblastoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Transcription Factors/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Gene Expression Profiling , Humans , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Mutation , Neuroblastoma/genetics , Neuroblastoma/pathology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Pyridones/pharmacology , Pyridones/therapeutic use , Pyrimidinones/pharmacology , Pyrimidinones/therapeutic use , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL