Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Materials (Basel) ; 17(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38793315

ABSTRACT

High-index contrast lithium niobate waveguides, fabricated by the High Vacuum Vapor-phase Proton Exchange (HiVac-VPE) technique, are very promising for increasing both the optical nonlinear and electro-optical efficiencies of photonic integrated devices. So as to play this role effectively, it is mandatory to know the crystallographic phase composition of waveguides and the position of protonated layers for appropriate tailoring and optimization based on the intended applications. In addition, the estimation of structural disorder and electro-optical properties of the waveguides are also of high interest. Benefiting from Raman spectroscopy, IR reflection, IR absorption, and UV-VIS absorption, the HxLi1-xNbO3 phase compositions, as well as the structural disorder in waveguides, were determined. Based on experimental data on the shift of the fundamental absorption edge, we have quantitatively estimated the electro-optic coefficient r13 in as-exchanged waveguides. The electro-optical properties of the waveguides have been found to be depending on the phase composition. The obtained results allow for reconsidering the proton exchange fabricating process of photonic nonlinear devices and electro-optic modulators based on high-index contrast channel waveguides on the LiNbO3 platform.

2.
Mol Ecol Resour ; 24(5): e13969, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38747336

ABSTRACT

A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude - almost the entire geographical range of the European subspecies. Genome-wide variation was consistent with a recent colonisation across Europe from a South-East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear 'islands of differentiation', even among populations with very low levels of genome-wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype-based measures of selection were related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio-temporal evolutionary dynamics.


Subject(s)
Genetic Variation , Polymorphism, Single Nucleotide , Songbirds , Animals , Songbirds/genetics , Songbirds/classification , Genetics, Population/methods , Europe , Passeriformes/genetics , Passeriformes/classification , Haplotypes/genetics , Recombination, Genetic , Selection, Genetic
3.
Biomolecules ; 13(4)2023 04 21.
Article in English | MEDLINE | ID: mdl-37189460

ABSTRACT

Reactive oxygen species (ROS) play a major role in the regulation of various processes in the cell. The increase in their production is a factor contributing to the development of numerous pathologies, including inflammation, fibrosis, and cancer. Accordingly, the study of ROS production and neutralization, as well as redox-dependent processes and the post-translational modifications of proteins, is warranted. Here, we present a transcriptomic analysis of the gene expression of various redox systems and related metabolic processes, such as polyamine and proline metabolism and the urea cycle in Huh7.5 hepatoma cells and the HepaRG liver progenitor cell line, that are widely used in hepatitis research. In addition, changes in response to the activation of polyamine catabolism that contribute to oxidative stress were studied. In particular, differences in the gene expression of various ROS-producing and ROS-neutralizing proteins, the enzymes of polyamine metabolisms and proline and urea cycles, as well as calcium ion transporters between cell lines, are shown. The data obtained are important for understanding the redox biology of viral hepatitis and elucidating the influence of the laboratory models used.


Subject(s)
Carcinoma, Hepatocellular , Hepatocytes , Liver Neoplasms , Polyamines , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Gene Expression Profiling , Hepatocytes/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Metabolic Networks and Pathways , Oxidation-Reduction , Polyamines/metabolism , Proline/metabolism , Reactive Oxygen Species/metabolism , Urea
4.
Cancers (Basel) ; 15(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36765590

ABSTRACT

Severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and rapidly caused a pandemic that led to the death of >6 million people due to hypercoagulation and cytokine storm. In addition, SARS-CoV-2 triggers a wide array of pathologies, including liver dysfunction and neurological disorders. It remains unclear if these events are due to direct infection of the respective tissues or result from systemic inflammation. Here, we explored the possible infection of hepatic and CNS cell lines by SARS-CoV-2. We show that even moderate expression levels of the angiotensin-converting enzyme 2 (ACE2) are sufficient for productive infection. SARS-CoV-2 infects hepatoma Huh7.5 and HepG2 cells but not non-transformed liver progenitor or hepatocyte/cholangiocyte-like HepaRG cells. However, exposure to the virus causes partial dedifferentiation of HepaRG cells. SARS-CoV-2 can also establish efficient replication in some low-passage, high-grade glioblastoma cell lines. In contrast, embryonal primary astrocytes or neuroblastoma cells did not support replication of the virus. Glioblastoma cell permissiveness is associated with defects in interferon production. Overall, these results suggest that liver dysfunction during COVID-19 is not due to infection of these tissues by SARS-CoV-2. Furthermore, tumors may potentially serve as reservoirs for the virus during infection.

SELECTION OF CITATIONS
SEARCH DETAIL