Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.044
Filter
Add more filters

Publication year range
1.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36472568

ABSTRACT

Accounting for cell type compositions has been very successful at analyzing high-throughput data from heterogeneous tissues. Differential gene expression analysis at cell type level is becoming increasingly popular, yielding biomarker discovery in a finer granularity within a particular cell type. Although several computational methods have been developed to identify cell type-specific differentially expressed genes (csDEG) from RNA-seq data, a systematic evaluation is yet to be performed. Here, we thoroughly benchmark six recently published methods: CellDMC, CARseq, TOAST, LRCDE, CeDAR and TCA, together with two classical methods, csSAM and DESeq2, for a comprehensive comparison. We aim to systematically evaluate the performance of popular csDEG detection methods and provide guidance to researchers. In simulation studies, we benchmark available methods under various scenarios of baseline expression levels, sample sizes, cell type compositions, expression level alterations, technical noises and biological dispersions. Real data analyses of three large datasets on inflammatory bowel disease, lung cancer and autism provide evaluation in both the gene level and the pathway level. We find that csDEG calling is strongly affected by effect size, baseline expression level and cell type compositions. Results imply that csDEG discovery is a challenging task itself, with room to improvements on handling low signal-to-noise ratio and low expression genes.


Subject(s)
Gene Expression Profiling , Software , Gene Expression Profiling/methods , RNA-Seq , Computer Simulation , Signal-To-Noise Ratio , Sequence Analysis, RNA/methods
2.
Brief Bioinform ; 24(3)2023 05 19.
Article in English | MEDLINE | ID: mdl-37039682

ABSTRACT

RNA methylation has emerged recently as an active research domain to study post-transcriptional alteration in gene expression regulation. Various types of RNA methylation, including N6-methyladenosine (m6A), are involved in human disease development. As a newly developed sequencing biotechnology to quantify the m6A level on a transcriptome-wide scale, MeRIP-seq expands RNA epigenetics study in both basic and clinical applications, with an upward trend. One of the fundamental questions in RNA methylation data analysis is to identify the Differentially Methylated Regions (DMRs), by contrasting cases and controls. Multiple statistical approaches have been recently developed for DMR detection, but there is a lack of a comprehensive evaluation for these analytical methods. Here, we thoroughly assess all eight existing methods for DMR calling, using both synthetic and real data. Our simulation adopts a Gamma-Poisson model and logit linear framework, and accommodates various sample sizes and DMR proportions for benchmarking. For all methods, low sensitivities are observed among regions with low input levels, but they can be drastically boosted by an increase in sample size. TRESS and exomePeak2 perform the best using metrics of detection precision, FDR, type I error control and runtime, though hampered by low sensitivity. DRME and exomePeak obtain high sensitivities, at the expense of inflated FDR and type I error. Analyses on three real datasets suggest differential preference on identified DMR length and uniquely discovered regions, between these methods.


Subject(s)
RNA , Transcriptome , Humans , Sequence Analysis, RNA/methods , RNA/genetics , Methylation , Adenosine/genetics , Adenosine/metabolism
3.
Plant Physiol ; 195(1): 502-517, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38243831

ABSTRACT

Apple Valsa canker, caused by the ascomycete fungus Valsa mali, employs virulence effectors to disturb host immunity and poses a substantial threat to the apple industry. However, our understanding of how V. mali effectors regulate host defense responses remains limited. Here, we identified the V. mali effector Vm_04797, which was upregulated during the early infection stage. Vm_04797, a secreted protein, suppressed Inverted formin 1 (INF1)-triggered cell death in Nicotiana benthamiana and performed virulence functions inside plant cells. Vm_04797 deletion mutants showed substantially reduced virulence toward apple. The adaptor protein MdAP-2ß positively regulated apple Valsa canker resistance and was targeted and degraded by Vm_04797 via the ubiquitination pathway. The in vitro analysis suggested that Vm_04797 possesses E3 ubiquitin ligase activity. Further analysis revealed that MdAP-2ß is involved in autophagy by interacting with Malus domestica autophagy protein 16 MdATG16 and promoting its accumulation. By degrading MdAP-2ß, Vm_04797 inhibited autophagic flux, thereby disrupting the defense response mediated by autophagy. Our findings provide insights into the molecular mechanisms employed by the effectors of E3 ubiquitin ligase activity in ascomycete fungi to regulate host immunity.


Subject(s)
Ascomycota , Autophagy , Fungal Proteins , Malus , Nicotiana , Plant Diseases , Plant Proteins , Plant Diseases/microbiology , Malus/microbiology , Malus/metabolism , Malus/genetics , Ascomycota/pathogenicity , Ascomycota/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Nicotiana/microbiology , Nicotiana/genetics , Nicotiana/metabolism , Host-Pathogen Interactions , Virulence , Plant Immunity/genetics , Ubiquitination , Disease Resistance/genetics
4.
Plant Physiol ; 194(4): 2755-2770, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38235781

ABSTRACT

Apple Valsa canker (AVC) is a devastating disease of apple (Malus × domestica), caused by Valsa mali (Vm). The Cysteine-rich secretory protein, Antigen 5, and Pathogenesis-related protein 1 (CAP) superfamily protein PATHOGENESIS-RELATED PROTEIN 1-LIKE PROTEIN c (VmPR1c) plays an important role in the pathogenicity of Vm. However, the mechanisms through which it exerts its virulence function in Vm-apple interactions remain unclear. In this study, we identified an apple valine-glutamine (VQ)-motif-containing protein, MdVQ29, as a VmPR1c target protein. MdVQ29-overexpressing transgenic apple plants showed substantially enhanced AVC resistance as compared with the wild type. MdVQ29 interacted with the transcription factor MdWRKY23, which was further shown to bind to the promoter of the jasmonic acid (JA) signaling-related gene CORONATINE INSENSITIVE 1 (MdCOI1) and activate its expression to activate the JA signaling pathway. Disease evaluation in lesion areas on infected leaves showed that MdVQ29 positively modulated apple resistance in a MdWRKY23-dependent manner. Furthermore, MdVQ29 promoted the transcriptional activity of MdWRKY23 toward MdCOI1. In addition, VmPR1c suppressed the MdVQ29-enhanced transcriptional activation activity of MdWRKY23 by promoting the degradation of MdVQ29 and inhibiting MdVQ29 expression and the MdVQ29-MdWRKY23 interaction, thereby interfering with the JA signaling pathway and facilitating Vm infection. Overall, our results demonstrate that VmPR1c targets MdVQ29 to manipulate the JA signaling pathway to regulate immunity. Thus, this study provides an important theoretical basis and guidance for mining and utilizing disease-resistance genetic resources for genetically improving apples.


Subject(s)
Ascomycota , Cyclopentanes , Malus , Oxylipins , Malus/genetics , Malus/metabolism , Glutamine/metabolism , Valine/metabolism , Signal Transduction , Plant Diseases/genetics
5.
Nat Chem Biol ; 19(10): 1276-1285, 2023 10.
Article in English | MEDLINE | ID: mdl-37550431

ABSTRACT

Phe-Met-Arg-Phe-amide (FMRFamide)-activated sodium channels (FaNaCs) are a family of channels activated by the neuropeptide FMRFamide, and, to date, the underlying ligand gating mechanism remains unknown. Here we present the high-resolution cryo-electron microscopy structures of Aplysia californica FaNaC in both apo and FMRFamide-bound states. AcFaNaC forms a chalice-shaped trimer and possesses several notable features, including two FaNaC-specific insertion regions, a distinct finger domain and non-domain-swapped transmembrane helix 2 in the transmembrane domain (TMD). One FMRFamide binds to each subunit in a cleft located in the top-most region of the extracellular domain, with participation of residues from the neighboring subunit. Bound FMRFamide adopts an extended conformation. FMRFamide binds tightly to A. californica FaNaC in an N terminus-in manner, which causes collapse of the binding cleft and induces large local conformational rearrangements. Such conformational changes are propagated downward toward the TMD via the palm domain, possibly resulting in outward movement of the TMD and dilation of the ion conduction pore.


Subject(s)
Ion Channel Gating , Neuropeptides , FMRFamide/metabolism , FMRFamide/pharmacology , Cryoelectron Microscopy , Neuropeptides/metabolism , Sodium Channels/chemistry , Sodium Channels/metabolism
6.
PLoS Comput Biol ; 20(2): e1011875, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38346081

ABSTRACT

Recently, novel biotechnologies to quantify RNA modifications became an increasingly popular choice for researchers who study epitranscriptome. When studying RNA methylations such as N6-methyladenosine (m6A), researchers need to make several decisions in its experimental design, especially the sample size and a proper statistical power. Due to the complexity and high-throughput nature of m6A sequencing measurements, methods for power calculation and study design are still currently unavailable. In this work, we propose a statistical power assessment tool, magpie, for power calculation and experimental design for epitranscriptome studies using m6A sequencing data. Our simulation-based power assessment tool will borrow information from real pilot data, and inspect various influential factors including sample size, sequencing depth, effect size, and basal expression ranges. We integrate two modules in magpie: (i) a flexible and realistic simulator module to synthesize m6A sequencing data based on real data; and (ii) a power assessment module to examine a set of comprehensive evaluation metrics.


Subject(s)
RNA Methylation , RNA , RNA/genetics , RNA/metabolism , Methylation , High-Throughput Nucleotide Sequencing
7.
Plant J ; 115(3): 803-819, 2023 08.
Article in English | MEDLINE | ID: mdl-37118888

ABSTRACT

Effectors play important roles in facilitating the infection of plant pathogenic fungi. However, the gene expression regulatory mechanism of effector genes, in particular at the post-transcriptional level, is largely unknown. In this study, we uncovered the post-transcriptional regulation of an effector gene VmSP1 by a miRNA-like RNA (Vm-milR16) facilitating the infection of the apple tree Valsa canker pathogen Valsa mali. Genetic and molecular biological assays indicated that the expression of VmSP1 could be suppressed by Vm-milR16-mediated mRNA cleavage in a sequence-specific manner. During V. mali infection, Vm-milR16 was downregulated, whereas VmSP1 was upregulated, which further indicated the regulation relationship. VmSP1 was further demonstrated to be a secreted protein and could suppress plant immunity. Deletion of VmSP1 did not affect the vegetative growth but significantly reduced the virulence of V. mali. Further study indicated that VmSP1 could interact with the transcription factor MdbHLH189 of apple. Transiently overexpression of MdbHLH189 enhanced host resistance to V. mali by enhancing the expression of apple defense-related genes, together with the increased callose deposition. Silencing of MdbHLH189 compromised host resistance to V. mali. Our findings uncovered the novel epigenetic regulation mechanism of a virulence-associated effector gene mediated by a fungal milRNA at the post-transcriptional level, and the results enriched the understanding of the function and action mechanism of effectors in tree pathogenic fungi.


Subject(s)
Malus , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Epigenesis, Genetic , Plant Diseases/genetics , Plant Diseases/microbiology , Malus/metabolism
8.
J Am Chem Soc ; 146(23): 15887-15896, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38825776

ABSTRACT

Oxide thin films grown on metal surfaces have wide applications in catalysis and beyond owing to their unique surface structures compared to their bulk counterparts. Despite extensive studies, the atomic structures of copper surface oxides on Cu(111), commonly referred to as "44" and "29", have remained elusive. In this work, we demonstrated an approach for the structural determination of oxide surfaces using element-specific scanning tunneling microscopy (STM) imaging enhanced by functionalized tips. This approach enabled us to resolve the atomic structures of "44" and "29" surface oxides, which were further corroborated by noncontact atomic force microscopy (nc-AFM) measurements and Monte Carlo (MC) simulations. The stoichiometry of the "44" and "29" frameworks was identified as Cu23O16 and Cu16O11, respectively. Contrary to the conventional hypothesis, we observed ordered Cu vacancies within the "44" structure manifesting as peanut-shaped cavities in the hexagonal lattice. Similarly, a combination of Cu and O vacancies within the "29" structure leads to bean-shaped cavities within the pentagonal lattice. Our study has thus resolved the decades-long controversy on the atomic structures of "44" and "29" surface oxides, advancing our understanding of copper oxidation processes and introducing a robust framework for the analysis of complex oxide surfaces.

9.
J Gene Med ; 26(1): e3644, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072402

ABSTRACT

BACKGROUND: Melanoma, a frequently encountered cutaneous malignancy characterized by a poor prognosis, persists in presenting formidable challenges despite the advancement in molecularly targeted drugs designed to improve survival rates significantly. Unfortunately, as more therapeutic choices have developed over time, the gradual emergence of drug resistance has become a notable impediment to the effectiveness of these therapeutic interventions. The hepatocyte growth factor (HGF)/c-met signaling pathway has attracted considerable attention, associated with drug resistance stemming from multiple potential mutations within the c-met gene. The activation of the HGF/c-met pathway operates in an autocrine manner in melanoma. Notably, a key player in the regulatory orchestration of HGF/c-met activation is the long non-coding RNA MEG3. METHODS: Melanoma tissues were collected to measure MEG3 expression. In vitro validation was performed on MEG3 to prove its oncogenic roles. Bioinformatic analyses were conducted on the TCGA database to build the MEG3-related score. The immune characteristics and mutation features of the MEG3-related score were explored. RESULTS: We revealed a negative correlation between HGF and MEG3. In melanoma cells, HGF inhibited MEG3 expression by augmenting the methylation of the MEG3 promoter. Significantly, MEG3 exhibits a suppressive impact on the proliferation and migration of melanoma cells, concurrently inhibiting c-met expression. Moreover, a predictive model centered around MEG3 demonstrates notable efficacy in forecasting critical prognostic indicators, immunological profiles, and mutation statuses among melanoma patients. CONCLUSIONS: The present study highlights the potential of MEG3 as a pivotal regulator of c-met, establishing it as a promising candidate for targeted drug development in the ongoing pursuit of effective therapeutic interventions.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Vemurafenib/pharmacology , Vemurafenib/therapeutic use , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Methylation , Cell Proliferation , Cell Line, Tumor
10.
J Neuroinflammation ; 21(1): 169, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961424

ABSTRACT

BACKGROUND: Understanding the mechanism behind sepsis-associated encephalopathy (SAE) remains a formidable task. This study endeavors to shed light on the complex cellular and molecular alterations that occur in the brains of a mouse model with SAE, ultimately unraveling the underlying mechanisms of this condition. METHODS: We established a murine model using intraperitoneal injection of lipopolysaccharide (LPS) in wild type and Anxa1-/- mice and collected brain tissues for analysis at 0-hour, 12-hour, 24-hour, and 72-hour post-injection. Utilizing advanced techniques such as single-nucleus RNA sequencing (snRNA-seq) and Stereo-seq, we conducted a comprehensive characterization of the cellular responses and molecular patterns within the brain. RESULTS: Our study uncovered notable temporal differences in the response to LPS challenge between Anxa1-/- (annexin A1 knockout) and wild type mice, specifically at the 12-hour and 24-hour time points following injection. We observed a significant increase in the proportion of Astro-2 and Micro-2 cells in these mice. These cells exhibited a colocalization pattern with the vascular subtype Vas-1, forming a distinct region known as V1A2M2, where Astro-2 and Micro-2 cells surrounded Vas-1. Moreover, through further analysis, we discovered significant upregulation of ligands and receptors such as Timp1-Cd63, Timp1-Itgb1, Timp1-Lrp1, as well as Ccl2-Ackr1 and Cxcl2-Ackr1 within this region. In addition, we observed a notable increase in the expression of Cd14-Itgb1, Cd14-Tlr2, and Cd14-C3ar1 in regions enriched with Micro-2 cells. Additionally, Cxcl10-Sdc4 showed broad upregulation in brain regions containing both Micro-2 and Astro-2 cells. Notably, upon LPS challenge, there was an observed increase in Anxa1 expression in the mouse brain. Furthermore, our study revealed a noteworthy increase in mortality rates following Anxa1 knockdown. However, we did not observe substantial differences in the types, numbers, or distribution of other brain cells between Anxa1-/- and wildtype mice over time. Nevertheless, when comparing the 24-hour post LPS injection time point, we observed a significant decrease in the proportion and distribution of Micro-2 and Astro-2 cells in the vicinity of blood vessels in Anxa1-/- mice. Additionally, we noted reduced expression levels of several ligand-receptor pairs including Cd14-Tlr2, Cd14-C3ar1, Cd14-Itgb1, Cxcl10-Sdc4, Ccl2-Ackr1, and Cxcl2-Ackr1. CONCLUSIONS: By combining snRNA-seq and Stereo-seq techniques, our study successfully identified a distinctive cellular colocalization, referred to as a special pathological niche, comprising Astro-2, Micro-2, and Vas-1 cells. Furthermore, we observed an upregulation of ligand-receptor pairs within this niche. These findings suggest a potential association between this cellular arrangement and the underlying mechanisms contributing to SAE or the increased mortality observed in Anxa1 knockdown mice.


Subject(s)
Astrocytes , Brain , Disease Models, Animal , Lipopolysaccharides , Mice, Knockout , Microglia , Sepsis-Associated Encephalopathy , Animals , Mice , Lipopolysaccharides/toxicity , Sepsis-Associated Encephalopathy/pathology , Sepsis-Associated Encephalopathy/genetics , Sepsis-Associated Encephalopathy/metabolism , Microglia/metabolism , Microglia/pathology , Brain/pathology , Brain/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Sequence Analysis, RNA/methods , Mice, Inbred C57BL , Transcriptome , Male
11.
J Neuroinflammation ; 21(1): 104, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649932

ABSTRACT

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common neurological complication of anesthesia and surgery in aging individuals. Neuroinflammation has been identified as a hallmark of POCD. However, safe and effective treatments of POCD are still lacking. Itaconate is an immunoregulatory metabolite derived from the tricarboxylic acid cycle that exerts anti-inflammatory effects by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. In this study, we investigated the effects and underlying mechanism of 4-octyl itaconate (OI), a cell-permeable itaconate derivative, on POCD in aged mice. METHODS: A POCD animal model was established by performing aseptic laparotomy in 18-month-old male C57BL/6 mice under isoflurane anesthesia while maintaining spontaneous ventilation. OI was intraperitoneally injected into the mice after surgery. Primary microglia and neurons were isolated and treated to lipopolysaccharide (LPS), isoflurane, and OI. Cognitive function, neuroinflammatory responses, as well as levels of gut microbiota and their metabolites were evaluated. To determine the mechanisms underlying the therapeutic effects of OI in POCD, ML385, an antagonist of Nrf2, was administered intraperitoneally. Cognitive function, neuroinflammatory responses, endogenous neurogenesis, neuronal apoptosis, and Nrf2/extracellular signal-related kinases (ERK) signaling pathway were evaluated. RESULTS: Our findings revealed that OI treatment significantly alleviated anesthesia/surgery-induced cognitive impairment, concomitant with reduced levels of the neuroinflammatory cytokines IL-1ß and IL-6, as well as suppressed activation of microglia and astrocytes in the hippocampus. Similarly, OI treatment inhibited the expression of IL-1ß and IL-6 in LPS and isoflurane-induced primary microglia in vitro. Intraperitoneal administration of OI led to alterations in the gut microbiota and promoted the production of microbiota-derived metabolites associated with neurogenesis. We further confirmed that OI promoted endogenous neurogenesis and inhibited neuronal apoptosis in the hippocampal dentate gyrus of aged mice. Mechanistically, we observed a decrease in Nrf2 expression in hippocampal neurons both in vitro and in vivo, which was reversed by OI treatment. We found that Nrf2 was required for OI treatment to inhibit neuroinflammation in POCD. The enhanced POCD recovery and promotion of neurogenesis triggered by OI exposure were, at least partially, mediated by the activation of the Nrf2/ERK signaling pathway. CONCLUSIONS: Our findings demonstrate that OI can attenuate anesthesia/surgery-induced cognitive impairment by stabilizing the gut microbiota and activating Nrf2 signaling to restrict neuroinflammation and promote neurogenesis. Boosting endogenous itaconate or supplementation with exogenous itaconate derivatives may represent novel strategies for the treatment of POCD.


Subject(s)
Gastrointestinal Microbiome , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Neurogenesis , Neuroinflammatory Diseases , Postoperative Cognitive Complications , Succinates , Animals , NF-E2-Related Factor 2/metabolism , Male , Mice , Neurogenesis/drug effects , Gastrointestinal Microbiome/drug effects , Postoperative Cognitive Complications/metabolism , Neuroinflammatory Diseases/metabolism , Succinates/pharmacology , Succinates/therapeutic use , Brain/drug effects , Brain/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Anesthesia
12.
Small ; 20(14): e2308473, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37972267

ABSTRACT

Decorating platinum (Pt) with a single atom offers a promising approach to tailoring their catalytic activity. In this study, for the first time, an innovative assistive active sites (AAS) strategy is proposed to construct high-loading (3.46wt.%) single Fe─N4 as AAS, which are further hybridized with small Pt nanoparticles to enhance both oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) activities. For ORR, the target catalyst (Pt/HFeSA-HCS) exhibits a higher mass activity (MA) of 0.98 A mgPt -1 and specific activity (SA) of 1.39 mA cmPt -2 at 0.90 V versus RHE. As for MOR, Pt/HFeSA-HCS shows exceptional MA (3.21 A mgPt -1) and SA (4.27 mA cmPt -2) at peak values, surpassing commercial Pt/C by 15.3 and 11.5 times, respectively. The underlying mechanism behind this AAS strategy is to find that in MOR, Fe─N4 promotes water dissociation, generating more *OH to accelerate the conversion of *CO to CO2. Meanwhile, in ORR, Fe─N4 acts as a competitor to adsorb *OH, weakening Pt─OH bonding and facilitating desorption of *OH on the Pt surface. Constructing AAS that can enhance dual functionality simultaneously can be seen as a successful "kill two birds with one stone" strategy.

13.
J Virol ; 97(2): e0003523, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36744958

ABSTRACT

Asp-Glu-Ala-Asp (DEAD) box helicase 3 X-linked (DDX3X) plays important regulatory roles in the replication of many viruses. However, the role of DDX3X in rhabdovirus replication has seldomly been investigated. In this study, snakehead vesiculovirus (SHVV), a kind of fish rhabdovirus, was used to study the role of DDX3X in rhabdovirus replication. DDX3X was identified as an interacting partner of SHVV phosphoprotein (P). The expression level of DDX3X was increased at an early stage of SHVV infection and then decreased to a normal level at a later infection stage. Overexpression of DDX3X promoted, while knockdown of DDX3X using specific small interfering RNAs (siRNAs) suppressed, SHVV replication, indicating that DDX3X was a proviral factor for SHVV replication. The N-terminal and core domains of DDX3X (DDX3X-N and DDX3X-Core) were determined to be the regions responsible for its interaction with SHVV P. Overexpression of DDX3X-Core suppressed SHVV replication by competitively disrupting the interaction between full-length DDX3X and SHVV P, suggesting that full-length DDX3X-P interaction was required for SHVV replication. Mechanistically, DDX3X-mediated promotion of SHVV replication was due not to inhibition of interferon expression but to maintenance of the stability of SHVV P to avoid autophagy-lysosome-dependent degradation. Collectively, our data suggest that DDX3X is hijacked by SHVV P to ensure effective replication of SHVV, which suggests an important anti-SHVV target. This study will help elucidate the role of DDX3X in regulating the replication of rhabdoviruses. IMPORTANCE Growing evidence has suggested that DDX3X plays important roles in virus replication. In one respect, DDX3X inhibits the replication of viruses, including hepatitis B virus, influenza A virus, Newcastle disease virus, duck Tembusu virus, and red-spotted grouper nervous necrosis virus. In another respect, DDX3X is required for the replication of viruses, including hepatitis C virus, Japanese encephalitis virus, West Nile virus, murine norovirus, herpes simplex virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Because DDX3X has rarely been investigated in rhabdovirus replication, this study aimed at investigating the role of DDX3X in rhabdovirus replication by using the fish rhabdovirus SHVV as a model. We found that DDX3X was required for SHVV replication, with the mechanism that DDX3X interacts with and maintains the stability of SHVV phosphoprotein. Our data provide novel insights into the role of DDX3X in virus replication and will facilitate the design of antiviral drugs against rhabdovirus infection.


Subject(s)
DEAD-box RNA Helicases , Perciformes , Phosphoproteins , Vesiculovirus , Virus Replication , Animals , DEAD-box RNA Helicases/genetics , Fishes , Perciformes/virology , RNA, Small Interfering , Vesiculovirus/pathogenicity , Vesiculovirus/physiology , Viral Proteins
14.
New Phytol ; 243(3): 1154-1171, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38822646

ABSTRACT

Cross-kingdom RNA interference (RNAi) is a crucial mechanism in host-pathogen interactions, with RNA-dependent RNA polymerase (RdRP) playing a vital role in signal amplification during RNAi. However, the role of pathogenic fungal RdRP in siRNAs generation and the regulation of plant-pathogen interactions remains elusive. Using deep sequencing, molecular, genetic, and biochemical approaches, this study revealed that VmRDR2 of Valsa mali regulates VmR2-siR1 to suppress the disease resistance-related gene MdLRP14 in apple. Both VmRDR1 and VmRDR2 are essential for the pathogenicity of V. mali in apple, with VmRDR2 mediating the generation of endogenous siRNAs, including an infection-related siRNA, VmR2-siR1. This siRNA specifically degrades the apple intracellular LRR-RI protein gene MdLRP14 in a sequence-specific manner, and overexpression of MdLRP14 enhances apple resistance against V. mali, which can be suppressed by VmR2-siR1. Conversely, MdLRP14 knockdown reduces resistance. In summary, this study demonstrates that VmRDR2 contributes to the generation of VmR2-siR1, which silences the host's intracellular LRR protein gene, thereby inhibiting host resistance. These findings offer novel insights into the fungi-mediated pathogenicity mechanism through RNAi.


Subject(s)
Disease Resistance , Malus , Plant Diseases , Plant Proteins , RNA Interference , Malus/genetics , Malus/microbiology , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Fungal Proteins/metabolism , Fungal Proteins/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Genes, Plant
15.
Opt Express ; 32(3): 3167-3183, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297544

ABSTRACT

Clarifying the aberrations arising from freeform surfaces is of great significance for maximizing the potential of freeform surfaces in the design of optical systems. However, the current precision in calculating aberration contribution of freeform surface terms for non-zero field of view is insufficient, impeding the development of freeform imaging systems with larger field of view. This paper proposes a high-precision analysis of aberration contribution of freeform surface terms based on nodal aberration theory, particularly for non-zero field points. Accurate calculation formulas of aberrations generated by Zernike terms on freeform surface are presented. Design examples illustrate that the calculation error of the provided formulas is 78% less than that of conventional theoretical values. Building upon high-precision analysis, we propose an optimization method for off-axis freeform surface systems and illustrate its effectiveness through the optimization of an off-axis three-mirror system. This research extends the applicability of nodal aberration theory in aberration analysis, offering valuable insights for the optimal design and alignment of optical freeform systems.

16.
Opt Lett ; 49(11): 2942-2945, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824298

ABSTRACT

In this Letter, an optically transparent and broadband absorber designed using a multi-objective genetic algorithm (MOGA) is proposed. The absorption of the multilayer lossy frequency selective surface-based absorber is calculated by multilayer absorption equations and equivalent circuit models. To solve the problem of the unbalanced structure absorption bandwidth and thickness, an algorithm is used for optimizing the geometric and sheet resistance parameters of the structure. A multilayer and optically transparent absorber with 90% absorption bandwidth covering a frequency range of 2-18 GHz (S-band to Ku-band) is developed based on the MOGA design method with optical transmittance of 60%. Its total thickness consists of a wavelength of only 0.095, and it has high oblique incidence stability, which makes it useful in the stealth technology and transparent electromagnetic shielding applications.

17.
Xenotransplantation ; 31(2): e12818, 2024.
Article in English | MEDLINE | ID: mdl-37529830

ABSTRACT

BACKGROUND: Xenoantigens other than Gal, Neu5Gc, and Sda may be playing a role in pig graft rejection. We investigated the incidence of antibodies to unknown pig xenoantigen in different human groups. METHODS: We collected blood from TKO/hCD55 pigs (n = 3), and isolated PBMCs and RBCs. Serum samples were collected from (i) healthy human volunteers (n = 43), (ii) patients with end-stage renal disease (ESRD) (n = 87), (iii) the same patients after kidney allotransplantation (n = 50), and (iv) renal allotransplant recipients experiencing T cell-mediated rejection (allo-TCMR, n = 10). The sera were initially incubated with TKO/hCD55 pRBCs (1 × 108 cells) for 1 h to absorb anti-pig antibodies (except against SLA and possibly other antigens not expressed on pRBCs) and then the serum (absorbed or unabsorbed) was tested for antibody binding and complement-dependent cytotoxicity (CDC) to TKO/hCD55 pig PBMCs. RESULTS: A significant reduction in IgM/IgG binding and CDC was observed in the absorbed sera. Serum obtained before and after renal allotransplantation showed no significant difference in IgM or IgG binding to, or in CDC of, TKO/hCD55 pig cells. IgM antibodies (but rarely IgG) against unknown xenoantigens expressed on TKO/hCD55 PBMCs, possibly against swine leukocyte antigens, were documented in healthy humans, patients with ESRD, and those with renal allografts undergoing acute T cell rejection. IgM (but not CDC) was higher in patients experiencing allo-TCMR. CONCLUSION: Human sera contain IgM antibodies against unknown pig xenoantigens expressed on TKO/hCD55 pPBMCs. Although not confirmed in the present study, the targets for these antibodies may include swine leukocyte antigens.


Subject(s)
Antigens, Heterophile , Kidney Failure, Chronic , Animals , Humans , Swine , Animals, Genetically Modified , Incidence , Transplantation, Heterologous , Immunoglobulin M , Immunoglobulin G , HLA Antigens , Graft Rejection
18.
Arterioscler Thromb Vasc Biol ; 43(2): 312-322, 2023 02.
Article in English | MEDLINE | ID: mdl-36519469

ABSTRACT

BACKGROUND: The endothelial-mesenchymal transition (EndoMT) is a fundamental process for heart valve formation and defects in EndoMT cause aortic valve abnormalities. Our previous genome-wide association study identified multiple variants in a large chromosome 8 segment as significantly associated with bicuspid aortic valve (BAV). The objective of this study is to determine the biological effects of this large noncoding segment in human induced pluripotent stem cell (hiPSC)-based EndoMT. METHODS: A large genomic segment enriched for BAV-associated variants was deleted in hiPSCs using 2-step CRISPR/Cas9 editing. To address the effects of the variants on GATA4 expression, we generated CRISPR repression hiPSC lines (CRISPRi) as well as hiPSCs from BAV patients. The resulting hiPSCs were differentiated to mesenchymal/myofibroblast-like cells through cardiovascular-lineage endothelial cells for molecular and cellular analysis. Single-cell RNA sequencing was also performed at different stages of EndoMT induction. RESULTS: The large deletion impaired hiPSC-based EndoMT in multiple biallelic clones compared with their isogenic control. It also reduced GATA4 transcript and protein levels during EndoMT, sparing the other genes nearby the deletion segment. Single-cell trajectory analysis revealed the molecular reprogramming during EndoMT. Putative GATA-binding protein targets during EndoMT were uncovered, including genes implicated in endocardial cushion formation and EndoMT process. Differentiation of cells derived from BAV patients carrying the rs117430032 variant as well as CRISPRi repression of the rs117430032 locus resulted in lower GATA4 expression in a stage-specific manner. TWIST1 was identified as a potential regulator of GATA4 expression, showing specificity to the locus tagged by rs117430032. CONCLUSIONS: BAV-associated distal regions regulate GATA4 expression during hiPSC-based EndoMT, which in turn promotes EndoMT progression, implicating its contribution to heart valve development.


Subject(s)
Bicuspid Aortic Valve Disease , Heart Valve Diseases , Induced Pluripotent Stem Cells , Humans , Bicuspid Aortic Valve Disease/metabolism , Induced Pluripotent Stem Cells/metabolism , Heart Valve Diseases/metabolism , Endothelial Cells/metabolism , Genome-Wide Association Study , Aortic Valve/metabolism , Regulatory Sequences, Nucleic Acid , GATA4 Transcription Factor/genetics , GATA4 Transcription Factor/metabolism
19.
Arterioscler Thromb Vasc Biol ; 43(12): 2285-2297, 2023 12.
Article in English | MEDLINE | ID: mdl-37823268

ABSTRACT

BACKGROUND: Although single-cell RNA-sequencing is commonly applied to dissect the heterogeneity in human tissues, it involves the preparation of single-cell suspensions via cell dissociation, causing loss of spatial information. In this study, we employed high-resolution single-cell transcriptome imaging to reveal rare smooth muscle cell (SMC) types in human thoracic aortic aneurysm (TAA) tissue samples. METHODS: Single-molecule spatial distribution of transcripts from 140 genes was analyzed in fresh-frozen human TAA samples with region and sex-matched controls. In vitro studies and tissue staining were performed to examine human CART prepropeptide (CARTPT) regulation and function. RESULTS: We captured thousands of cells per sample including a spatially distinct CARTPT-expressing SMC subtype enriched in male TAA samples. Immunoassays confirmed human CART (cocaine- and amphetamine-regulated transcript) protein enrichment in male TAA tissue and truncated CARTPT secretion into cell culture medium. Oxidized low-density lipoprotein, a cardiovascular risk factor, induced CARTPT expression, whereas CARTPT overexpression in human aortic SMCs increased the expression of key osteochondrogenic transcription factors and reduced contractile gene expression. Recombinant human CART treatment of human SMCs further confirmed this phenotype. Alizarin red staining revealed calcium deposition in male TAA samples showing similar localization with human CART staining. CONCLUSIONS: Here, we demonstrate the feasibility of single-molecule imaging in uncovering rare SMC subtypes in the diseased human aorta, a difficult tissue to dissociate. We identified a spatially distinct CARTPT-expressing SMC subtype enriched in male human TAA samples. Our functional studies suggest that human CART promotes osteochondrogenic switch of aortic SMCs, potentially leading to medial calcification of the thoracic aorta.


Subject(s)
Aortic Aneurysm, Thoracic , Calcinosis , Humans , Male , Transcriptome , Aortic Aneurysm, Thoracic/metabolism , Aorta, Thoracic/metabolism , Gene Expression Profiling/methods , Calcinosis/metabolism , Myocytes, Smooth Muscle/metabolism
20.
Fish Shellfish Immunol ; 148: 109483, 2024 May.
Article in English | MEDLINE | ID: mdl-38458501

ABSTRACT

The precise control of interferon (IFN) production is indispensable for the host to eliminate invading viruses and maintain a homeostatic state. In mammals, stimulator of interferon genes (STING) is a prominent adaptor involved in antiviral immune signaling pathways. However, the regulatory mechanism of piscine STING has not been thoroughly investigated. Here, we report that autophagy related 16 like 1 (bcATG16L1) of black carp (Mylopharyngodon piceus) is a negative regulator in black carp STING (bcSTING)-mediated signaling pathway. Initially, we substantiated that knockdown of bcATG16L1 increased the transcription of IFN and ISGs and enhanced the antiviral activity of the host cells. Subsequently, we identified that bcATG16L1 inhibited the bcSTING-mediated IFN promoter activation and proved that bcATG16L1 suppressed bcSTING-mediated antiviral ability. Furthermore, we revealed that bcATG16L1 interacted with bcSTING and the two proteins shared a similar subcellular distribution. Mechanically, we found that bcATG16L1 attenuated the oligomerization of bcSTING, which was a key step for bcSTING activation. Taken together, our results indicate that bcATG16L1 interacts with bcSTING, dampens the oligomerization of bcSTING, and negatively regulates bcSTING-mediated antiviral activity.


Subject(s)
Carps , Fish Diseases , Reoviridae Infections , Reoviridae , Rhabdoviridae Infections , Rhabdoviridae , Animals , Rhabdoviridae/physiology , Reoviridae/physiology , Rhabdoviridae Infections/veterinary , Carps/genetics , Carps/metabolism , Fish Proteins , Immunity, Innate/genetics , Interferons , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL