ABSTRACT
RNA interference (RNAi) therapeutics are an emerging class of medicines that selectively target mRNA transcripts to silence protein production and combat disease. Despite the recent progress, a generalizable approach for monitoring the efficacy of RNAi therapeutics without invasive biopsy remains a challenge. Here, we describe the development of a self-reporting, theranostic nanoparticle that delivers siRNA to silence a protein that drives cancer progression while also monitoring the functional activity of its downstream targets. Our therapeutic target is the transcription factor SMARCE1, which was previously identified as a key driver of invasion in early-stage breast cancer. Using a doxycycline-inducible shRNA knockdown in OVCAR8 ovarian cancer cells both in vitro and in vivo, we demonstrate that SMARCE1 is a master regulator of genes encoding proinvasive proteases in a model of human ovarian cancer. We additionally map the peptide cleavage profiles of SMARCE1-regulated proteases so as to design a readout for downstream enzymatic activity. To demonstrate the therapeutic and diagnostic potential of our approach, we engineered self-assembled layer-by-layer nanoparticles that can encapsulate nucleic acid cargo and be decorated with peptide substrates that release a urinary reporter upon exposure to SMARCE1-related proteases. In an orthotopic ovarian cancer xenograft model, theranostic nanoparticles were able to knockdown SMARCE1 which was in turn reported through a reduction in protease-activated urinary reporters. These LBL nanoparticles both silence gene products by delivering siRNA and noninvasively report on downstream target activity by delivering synthetic biomarkers to sites of disease, enabling dose-finding studies as well as longitudinal assessments of efficacy.
Subject(s)
Ovarian Neoplasms , Peptides , Humans , Female , RNA Interference , Peptides/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/therapy , Peptide Hydrolases , RNA, Small Interfering/genetics , Endopeptidases , Chromosomal Proteins, Non-Histone , DNA-Binding ProteinsABSTRACT
Metastasis is the primary cause of death of hepatocellular carcinoma (HCC), while the mechanism underlying this severe disease remains largely unclear. The Kruppel-like factor (KLF) family is one of the largest transcription factor families that control multiple physiologic and pathologic processes by governing the cellular transcriptome. To identify metastatic regulators of HCC, we conducted gene expression profiling on the MHCC97 cell series, a set of subclones of the original MHCC97 that was established by in vivo metastasis selection therefore harbouring differential metastatic capacities. We found that the expression of KLF9, a member of the KLF family, was dramatically repressed in the metastatic progeny clone of the MHCC97 cells. Functional studies revealed overexpression of KLF9 suppressed HCC migration in vitro and metastasis in vivo, while knockdown of KLF9 was sufficient to promote cell migration and metastasis accordingly. Mechanistically, we found the expression of KLF9 can reverse the pro-metastatic epithelial-mesenchymal transition (EMT) program via direct binding to the promoter regions of essential mesenchymal genes, thus repressing their expression. Interestingly, we further revealed that KLF9 was, in turn, directly suppressed by a mesenchymal transcription factor Slug, suggesting an intriguing negative feedback loop between KLF9 and the EMT program. Using clinical samples, we found that KLF9 was not only downregulated in HCC tissue compared to its normal counterparts but also further reduced in the HCC samples of whom had developed metastatic lesions. Together, we established a critical transcription factor that represses HCC metastasis, which is clinically and mechanically significant in HCC therapies.
Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Feedback , Gene Expression Regulation, Neoplastic , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Liver Neoplasms/pathology , Neoplasm Metastasis , Snail Family Transcription Factors/metabolism , Transcription Factors/metabolismABSTRACT
Advances in mammography have sparked an exponential increase in the detection of early-stage breast lesions, most commonly ductal carcinoma in situ (DCIS). More than 50% of DCIS lesions are benign and will remain indolent, never progressing to invasive cancers. However, the factors that promote DCIS invasion remain poorly understood. Here, we show that SMARCE1 is required for the invasive progression of DCIS and other early-stage tumors. We show that SMARCE1 drives invasion by regulating the expression of secreted proteases that degrade basement membrane, an ECM barrier surrounding all epithelial tissues. In functional studies, SMARCE1 promotes invasion of in situ cancers growing within primary human mammary tissues and is also required for metastasis in vivo. Mechanistically, SMARCE1 drives invasion by forming a SWI/SNF-independent complex with the transcription factor ILF3. In patients diagnosed with early-stage cancers, SMARCE1 expression is a strong predictor of eventual relapse and metastasis. Collectively, these findings establish SMARCE1 as a key driver of invasive progression in early-stage tumors.
Subject(s)
Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Carcinoma, Intraductal, Noninfiltrating/pathology , Cell Movement , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Neoplasm Recurrence, Local/pathology , Animals , Apoptosis , Breast Neoplasms/metabolism , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Intraductal, Noninfiltrating/metabolism , Cell Proliferation , Disease Progression , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Invasiveness , Neoplasm Recurrence, Local/metabolism , Prognosis , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor AssaysABSTRACT
Obesity is associated with both endoplasmic reticulum (ER) stress and chronic metabolic inflammation. ER stress activates the unfolded protein response (UPR) and has been implicated in a variety of cancers, including hepatocellular carcinoma (HCC). It is unclear whether individual UPR pathways are mechanistically linked to HCC development, however. Here we report a dual role for inositol-requiring enzyme 1α (IRE1α), the ER-localized UPR signal transducer, in obesity-promoted HCC development. We found that genetic ablation of IRE1α in hepatocytes not only markedly reduced the occurrence of diethylnitrosamine (DEN)-induced HCC in liver-specific IRE1α knockout (LKO) mice when fed a normal chow (NC) diet, but also protected against the acceleration of HCC progression during high-fat diet (HFD) feeding. Irrespective of their adiposity states, LKO mice showed decreased hepatocyte proliferation and signal transducer and activator of transcription 3 (STAT3) activation, even in the face of increased hepatic apoptosis. Furthermore, IRE1α abrogation blunted obesity-associated activation of hepatic inhibitor of nuclear factor kappa B kinase subunit beta (IKKß)-nuclear factor kappa B (NF-κB) pathway, leading to reduced production of the tumor-promoting inflammatory cytokines tumor necrosis factor (TNF) and interleukin 6 (IL-6). Importantly, higher IRE1α expression along with elevated STAT3 phosphorylation was also observed in the tumor tissues from human HCC patients, correlating with their poorer survival rate. CONCLUSION: IRE1α acts in a feed-forward loop during obesity-induced metabolic inflammation to promote HCC development through STAT3-mediated hepatocyte proliferation. (Hepatology 2018).
Subject(s)
Carcinoma, Hepatocellular/metabolism , Endoribonucleases/metabolism , Liver Neoplasms/metabolism , Obesity/complications , Protein Serine-Threonine Kinases/metabolism , Animals , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Cytokines/metabolism , Diet, High-Fat , Diethylnitrosamine/pharmacology , Hepatocytes/metabolism , Humans , Immunohistochemistry , Liver Neoplasms/etiology , Liver Neoplasms/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism , Obesity/veterinary , STAT3 Transcription Factor/metabolism , Signal TransductionABSTRACT
BACKGROUND: Chemerin, a known chemoattractant, participates in multiple biological events. However, its role in cancer remains largely unknown. METHODS: Chemerin expression was evaluated by real-time PCR, western blot and immunohistochemistry. Forced expression, RNAi, immunoprecipitation, etc. were used in function and mechanism study. Mouse models of extrahepatic and intrahepatic metastasis were employed to evaluate the therapeutic potential of chemerin. RESULTS: Chemerin expression was significantly downregulated in hepatocellular carcinoma, and associated with poor prognosis of HCC patients. Forced expression of chemerin inhibited in vitro migration, invasion and in vivo metastasis of HCC cells. Administration of chemerin effectively suppressed extrahepatic and intrahepatic metastases of HCC cells, resulting in prolonged survival of tumour-bearing nude mice. Chemerin upregulated expression and phosphatase activity of PTEN by interfering with PTEN-CMKLR1 interaction, leading to weakened ubiquitination of PTEN and decreased p-Akt (Ser473) level, which was responsible for suppressed migration, invasion and metastasis of HCC cells. Positive correlation between chemerin and PTEN, and reverse correlation between chemerin and p-Akt (Ser473) were also observed in HCC clinical samples and intrahepatic mouse model in vivo. CONCLUSIONS: Our study has revealed the suppressive role and therapeutic potential of chemerin in HCC metastasis, providing both a prognostic marker and drug candidate for HCC.
Subject(s)
Carcinoma, Hepatocellular/drug therapy , Chemokines/administration & dosage , Intercellular Signaling Peptides and Proteins/administration & dosage , Liver Neoplasms/drug therapy , PTEN Phosphohydrolase/genetics , Receptors, Chemokine/genetics , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Movement , Cell Proliferation , Chemokines/genetics , Gene Expression Regulation, Neoplastic/drug effects , Hep G2 Cells , Humans , Intercellular Signaling Peptides and Proteins/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis , Oncogene Protein v-akt/genetics , Signal Transduction/drug effects , Xenograft Model Antitumor AssaysABSTRACT
Burst-forming unit erythroid progenitors (BFU-Es) are so named based on their ability to generate in methylcellulose culture large colonies of erythroid cells that consist of "bursts" of smaller erythroid colonies derived from the later colony-forming unit erythroid progenitor erythropoietin (Epo)-dependent progenitors. "Early" BFU-E cells forming large BFU-E colonies presumably have higher capacities for self-renewal than do "late" BFU-Es forming small colonies, but the mechanism underlying this heterogeneity remains unknown. We show that the type III transforming growth factor ß (TGF-ß) receptor (TßRIII) is a marker that distinguishes early and late BFU-Es. Transient elevation of TßRIII expression promotes TGF-ß signaling during the early BFU-E to late BFU-E transition. Blocking TGF-ß signaling using a receptor kinase inhibitor increases early BFU-E cell self-renewal and total erythroblast production, suggesting the usefulness of this type of drug in treating Epo-unresponsive anemias.
Subject(s)
Antigens, Differentiation/metabolism , Erythrocytes/metabolism , Erythroid Precursor Cells/metabolism , Proteoglycans/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction/physiology , Transforming Growth Factor beta/metabolism , Anemia/metabolism , Anemia/therapy , Animals , Erythrocytes/cytology , Erythroid Precursor Cells/cytology , Erythropoietin/metabolism , Humans , MiceABSTRACT
Malignant carcinomas that recur following therapy are typically de-differentiated and multidrug resistant (MDR). De-differentiated cancer cells acquire MDR by up-regulating reactive oxygen species (ROS)-scavenging enzymes and drug efflux pumps, but how these genes are up-regulated in response to de-differentiation is not known. Here, we examine this question by using global transcriptional profiling to identify ROS-induced genes that are already up-regulated in de-differentiated cells, even in the absence of oxidative damage. Using this approach, we found that the Nrf2 transcription factor, which is the master regulator of cellular responses to oxidative stress, is preactivated in de-differentiated cells. In de-differentiated cells, Nrf2 is not activated by oxidation but rather through a noncanonical mechanism involving its phosphorylation by the ER membrane kinase PERK. In contrast, differentiated cells require oxidative damage to activate Nrf2. Constitutive PERK-Nrf2 signaling protects de-differentiated cells from chemotherapy by reducing ROS levels and increasing drug efflux. These findings are validated in therapy-resistant basal breast cancer cell lines and animal models, where inhibition of the PERK-Nrf2 signaling axis reversed the MDR of de-differentiated cancer cells. Additionally, analysis of patient tumor datasets showed that a PERK pathway signature correlates strongly with chemotherapy resistance, tumor grade, and overall survival. Collectively, these results indicate that de-differentiated cells up-regulate MDR genes via PERK-Nrf2 signaling and suggest that targeting this pathway could sensitize drug-resistant cells to chemotherapy.
Subject(s)
Breast Neoplasms/genetics , Carcinoma/genetics , Gene Expression Regulation, Neoplastic , Mammary Neoplasms, Experimental/genetics , NF-E2-Related Factor 2/genetics , Neoplasm Recurrence, Local/genetics , eIF-2 Kinase/genetics , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma/drug therapy , Carcinoma/metabolism , Carcinoma/pathology , Cell Dedifferentiation/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Profiling , Humans , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice, Inbred NOD , Mice, SCID , NF-E2-Related Factor 2/metabolism , Neoplasm Grading , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Oxidation-Reduction , Phosphorylation , Signal Transduction , Transcription, Genetic , eIF-2 Kinase/metabolismABSTRACT
Hepatic stellate cells (HSCs), a distinct category of non-parenchymal cells in the liver, are critical for liver homeostasis. In healthy livers, HSCs remain non-proliferative and quiescent. However, under conditions of acute or chronic liver damage, HSCs are activated and participate in the progression and regulation of liver diseases such as liver fibrosis, cirrhosis, and liver cancer. Fatty liver diseases (FLD), including nonalcoholic (NAFLD) and alcohol-related (ALD), are common chronic inflammatory conditions of the liver. These diseases, often resulting from multiple metabolic disorders, can progress through a sequence of inflammation, fibrosis, and ultimately, cancer. In this review, we focused on the activation and regulatory mechanism of HSCs in the context of FLD. We summarized the molecular pathways of activated HSCs (aHSCs) in mediating FLD and their role in promoting liver tumor development from the perspectives of cell proliferation, invasion, metastasis, angiogenesis, immunosuppression, and chemo-resistance. We aimed to offer an in-depth discussion on the reciprocal regulatory interactions between FLD and HSC activation, providing new insights for researchers in this field.
ABSTRACT
Resistance to immunotherapy poses a significant challenge in the treatment of colorectal cancer (CRC), and the underlying mechanisms are not fully understood. Recent studies have implicated PFKFB3, a crucial glycolytic enzyme, in shaping the tumor microenvironment in CRC. Our study aimed to systematically study the role of PFKFB3 in CRC. Bioinformatic analysis revealed that PFKFB3 expression is notably elevated in CRC tissues compared to normal counterparts. In vivo experiments confirmed that suppressing PFKFB3 reduces the tumorigenesis of CRC. We identified multiple cancer-associated pathways positively correlated with high expression of PFKFB3, such as epithelial-mesenchymal transition (EMT), hypoxia, KRAS signaling, angiogenesis, PI3K/AKT/mTOR, Hedgehog, and Notch pathways. Additionally, PFKFB3 exhibited significant correlations with various immune-related pathways, including complement, IL-2/STAT5, IL-6/JAK/STAT3, IFN-α/IFN-γ, TGF-ß, and TNF-α/NF-κB, as well as several immunosuppressive cell markers found in regulatory T cells (CCR8, TGFB1, STAT5B, FOXP3), M2 macrophages (CD163, VSIG4, MS4A4A), T cell exhaustion markers (CTLA-4, PDCD1, LAG3), and PD-L1. Intriguingly, increased PFKFB3 expression was observed in PD-L1 blockade-resistant patients and was associated with shorter overall survival. In a nutshell, PFKFB3 plays an important role in CRC tumorigenesis and resistance to immunotherapy. Targeting PFKFB3 inhibits tumor formation and enhances the efficacy of immunotherapy. Our findings underscore the functions of PFKFB3 in CRC, shedding light on both cancer-related and immunosuppressive pathways.
Subject(s)
Colorectal Neoplasms , Drug Resistance, Neoplasm , Immunotherapy , Phosphofructokinase-2 , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/therapy , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism , Humans , Immunotherapy/methods , Animals , Tumor Microenvironment , Mice , Male , Female , Cell Line, Tumor , Signal Transduction , Gene Expression Regulation, NeoplasticABSTRACT
Non-small-cell lung cancer (NSCLC) is a deadly disease due to lack of effective diagnosis biomarker and therapeutic target. Much effort has been made in defining gene defects in NSCLC, but its full molecular pathogenesis remains unexplored. Here, we found RACK1 (receptor of activated kinase 1) was elevated in most NSCLC, and its expression level correlated with key pathological characteristics including tumor differentiation, stage, and metastasis. In addition, RACK1 activated sonic hedgehog signaling pathway by interacting with and activating Smoothened to mediate Gli1-dependent transcription in NSCLC cells. And silencing RACK1 dramatically inhibited in vivo tumor growth and metastasis by blocking the sonic hedgehog signaling pathway. These results suggest that RACK1 represents a new promising diagnosis biomarker and therapeutic target for NSCLC.
Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , GTP-Binding Proteins/metabolism , Hedgehog Proteins/metabolism , Lung Neoplasms/metabolism , Neoplasm Proteins/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction , Animals , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Male , Mice , Mice, Nude , Neoplasm Metastasis , Neoplasm Transplantation , Receptors for Activated C Kinase , Receptors, G-Protein-Coupled/metabolism , Smoothened Receptor , Transcription Factors/metabolism , Transcription, Genetic , Transplantation, Heterologous , Zinc Finger Protein GLI1ABSTRACT
A high-throughput screen (HTS) was conducted against stably propagated cancer stem cell (CSC)-enriched populations using a library of 300,718 compounds from the National Institutes of Health (NIH) Molecular Libraries Small Molecule Repository (MLSMR). A cinnamide analog displayed greater than 20-fold selective inhibition of the breast CSC-like cell line (HMLE_sh_Ecad) over the isogenic control cell line (HMLE_sh_eGFP). Herein, we report structure-activity relationships of this class of cinnamides for selective lethality towards CSC-enriched populations.
Subject(s)
Amides/chemistry , Small Molecule Libraries/chemistry , Amides/toxicity , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Female , Humans , Neoplastic Stem Cells/drug effects , Small Molecule Libraries/toxicity , Structure-Activity RelationshipABSTRACT
Epithelial-mesenchymal transition (EMT) is a cellular mechanism used by cancer cells to acquire migratory and stemness properties. In this study, we show, through in vitro, in vivo, and 3D culture experiments, that the mitochondrial protein LACTB manifests tumor suppressor properties in ovarian cancer. We show that LACTB is significantly down-regulated in epithelial ovarian cancer cells and clinical tissues. Re-expression of LACTB negatively effects the growth of cancer cells but not of non-tumorigenic cells. Mechanistically, we show that LACTB leads to differentiation of ovarian cancer cells and loss of their stemness properties, which is achieved through the inhibition of the EMT program and the LACTB-dependent down-regulation of Snail2/Slug transcription factor. This study uncovers a novel role of LACTB in ovarian cancer and proposes new ways of counteracting the oncogenic EMT program in this model system.
Subject(s)
Epithelial-Mesenchymal Transition , Ovarian Neoplasms , Snail Family Transcription Factors , beta-Lactamases , Female , Humans , beta-Lactamases/genetics , beta-Lactamases/metabolism , Carcinogenesis , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolismABSTRACT
UNLABELLED: Surgical resection is the first-line treatment for hepatocellular carcinoma (HCC) patients with well-preserved liver function. Nevertheless, the rate of postoperative recurrence at 5 years is as high as 70%, and this gravely jeopardizes the therapeutic outcome. Clearly, new approaches are needed for preventing the relapse of this deadly disease. Taking advantage of a luciferase-labeled orthotopic xenograft model of HCC, we examined the role of sorafenib, the first systemic drug approved for advanced HCC patients, in the prevention of HCC recurrence. We found that sorafenib suppressed the development of postsurgical intrahepatic recurrence and abdominal metastasis and consequently led to prolonged postoperative survival of mice in this model. Furthermore, hyperactivity of extracellular signal-regulated kinase signaling caused by elevated levels of growth factors associated with postoperative liver regeneration enhanced the sensitivity of HCC cells to sorafenib; this provides a plausible explanation for the observation that recurrent tumors are more responsive to growth inhibition by sorafenib. CONCLUSION: Our results strongly suggest that by effectively reducing postoperative recurrence, sorafenib has a potential application in early-stage HCC patients who have undergone hepatectomy with curative intention.
Subject(s)
Antineoplastic Agents/therapeutic use , Benzenesulfonates/therapeutic use , Carcinoma, Hepatocellular/surgery , Liver Neoplasms/surgery , Neoplasm Metastasis/prevention & control , Neoplasm Recurrence, Local/prevention & control , Pyridines/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzenesulfonates/pharmacology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Niacinamide/analogs & derivatives , Phenylurea Compounds , Pyridines/pharmacology , Sorafenib , Transplantation, Heterologous , Treatment OutcomeABSTRACT
A high-throughput screen (HTS) with the National Institute of Health-Molecular Libraries Small Molecule Repository (NIH-MLSMR) compound collection identified a class of acyl hydrazones to be selectively lethal to breast cancer stem cell (CSC) enriched populations. Medicinal chemistry efforts were undertaken to optimize potency and selectivity of this class of compounds. The optimized compound was declared as a probe (ML239) with the NIH Molecular Libraries Program and displayed greater than 20-fold selective inhibition of the breast CSC-like cell line (HMLE_sh_Ecad) over the isogenic control line (HMLE_sh_GFP).
Subject(s)
Breast Neoplasms/drug therapy , Hydrazones/pharmacology , Neoplastic Stem Cells/cytology , Pyrroles/pharmacology , Breast Neoplasms/pathology , Female , HumansABSTRACT
INTRODUCTION: The large-leaved Kudingcha from the genus Ilex, which is used as a traditional Chinese tea, contains several characteristic triterpenoid saponins that can be subjected to quality control evaluation. OBJECTIVE: To develop and validate a rapid method incorporating reverse-phase ultra-performance liquid chromatography coupled with evaporative light scattering detection (UPLC-ELSD) for the simultaneous determination of the five triterpenoid saponins kudinoside L (1), kudinoside C (2), kudinoside A(3), kudinoside F(4) and kudinoside D(5) in several species of the large-leaved Kudingcha from the genus Ilex and 'Yerba Mate' (Ilex paraguariensis). METHODOLOGY: The five compounds were separated using a water-acetonitrile mobile phase with a Waters Acquity BEH C(18)-column (100 × 2.1 mm, 1.7 µm). RESULTS: Separation took 13 min with detection and quantification limits ranging from 12.5 to 29.8 ng and 41.3 to 98.2 ng, respectively. The method was validated according to the regulatory guidelines with respect to precision, stability, repeatability and recovery. The triterpenoid saponins showed a good regression relationship (r(2) > 0.999) within the test ranges, and the recovery of the method was in the 95-105% range. CONCLUSION: The present method can be used successfully for the quality control of the large-leaved Kudingcha. The different Ilex species showed differences in distribution of the five triterpenoids. Ilex kudingcha, which makes up the major species of the large-leaved Kudingcha, contains the maximum amount of triterpenoid saponins.
Subject(s)
Chromatography, Liquid/methods , Ilex/chemistry , Plant Leaves/chemistry , Saponins/analysis , Triterpenes/analysis , Beverages/analysis , China , Chromatography, Liquid/instrumentation , Ilex paraguariensis/chemistry , Limit of Detection , Quality Control , Reproducibility of Results , Saponins/chemistry , Triterpenes/chemistryABSTRACT
More than 40% of patients with late-stage colorectal cancer (CRC) develop liver metastasis (LM). Which immune cells play important roles in CRC-LM and contribute to the difference between left-sided CRC (LCC) and right-sided CRC (RCC) remain unclear. By single-cell RNA sequencing (scRNA-seq), we not only find that activated B cells are significantly depleted in CRC with LM, but also find a subtype of B cells developed from activated B cells, namely immature plasma cell population alpha (iMPA), highly correlated with metastasis. Mechanistically, inhibition of the Wnt and transforming growth factor ß (TGF-ß) pathways in cancer cell promotes activated B cell migration via the SDF-1-CXCR4 axis. This study reveals that B cell subpopulations in the tumor immune microenvironment (TIME) play a key role in CRC-LM as well as in LCC and RCC. The preventive effects of modulating B cell subpopulations in CRC may provide a rationale for subsequent drug development and CRC-LM management.
Subject(s)
Carcinoma, Renal Cell , Colorectal Neoplasms , Kidney Neoplasms , Liver Neoplasms , Carcinoma, Renal Cell/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Humans , Kidney Neoplasms/genetics , Liver Neoplasms/metabolism , Tumor MicroenvironmentABSTRACT
Tumors can reprogram the functions of metabolic enzymes to fuel malignant growth; however, beyond their conventional functions, key metabolic enzymes have not been found to directly govern cell mitosis. Here, we report that glutamine synthetase (GS) promotes cell proliferation by licensing mitotic progression independently of its metabolic function. GS depletion, but not impairment of its enzymatic activity, results in mitotic arrest and multinucleation across multiple lung and liver cancer cell lines, patient-derived organoids and xenografted tumors. Mechanistically, GS directly interacts with the nuclear pore protein NUP88 to prevent its binding to CDC20. Such interaction licenses activation of the CDC20-mediated anaphase-promoting complex or cyclosome to ensure proper metaphase-to-anaphase transition. In addition, GS is overexpressed in human non-small cell lung cancer and its depletion reduces tumor growth in mice and increases the efficacy of microtubule-targeted chemotherapy. Our findings highlight a moonlighting function of GS in governing mitosis and illustrate how an essential metabolic enzyme promotes cell proliferation and tumor development, beyond its main metabolic function.
Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Cell Cycle Proteins/metabolism , Cell Proliferation , Glutamate-Ammonia Ligase , Humans , Mice , MitosisABSTRACT
UNLABELLED: Eph/Ephrin family, one of the largest receptor tyrosine kinase families, has been extensively studied in morphogenesis and neural development. Recently, growing attention has been paid to its role in the initiation and progression of various cancers. However, the role of Eph/Ephrins in hepatocellular carcinoma (HCC) has been rarely investigated. In this study, we found that the expression of EphrinA2 was significantly up-regulated in both established cell lines and clinical tissue samples of HCC, and the most significant increase was observed in the tumors invading the portal veins. Forced expression of EphrinA2 in HCC cells significantly promoted in vivo tumorigenicity, whereas knockdown of this gene inhibited this oncogenic effect. We further found that suppression of apoptosis, rather than accelerating proliferation, was responsible for EphrinA2-enhanced tumorigenicity. In addition, EphrinA2 endowed cancer cells with resistance to tumor necrosis factor alpha (TNF-alpha)-induced apoptosis, thus facilitating their survival. Furthermore, we disclosed a novel EphrinA2/ras-related c3 botulinum toxin substrate 1 (Rac1)/V-akt murine thymoma viral oncogene homolog (Akt)/nuclear factor-kappa B (NF-kappaB) pathway contributing to the inhibitory effect on apoptosis in HCC cells. CONCLUSION: This study revealed that EphrinA2 played an important role in the development and progression of HCC by promoting the survival of cancer cells, indicating its role as a potential therapeutic target in HCC.
Subject(s)
Carcinoma, Hepatocellular/etiology , Ephrin-A2/physiology , Liver Neoplasms/etiology , NF-kappa B/physiology , Proto-Oncogene Proteins c-akt/physiology , Signal Transduction , rac1 GTP-Binding Protein/physiology , Cell Line, Tumor , Female , Humans , Male , Middle AgedABSTRACT
As a central cellular program to sense and transduce stress signals, the integrated stress response (ISR) pathway has been implicated in cancer initiation and progression. Depending on the genetic mutation landscape, cellular context, and differentiation states, there are emerging pieces of evidence showing that blockage of the ISR can selectively and effectively shift the balance of cancer cells toward apoptosis, rendering the ISR a promising target in cancer therapy. Going beyond its pro-survival functions, the ISR can also influence metastasis, especially via proteostasis-independent mechanisms. In particular, ISR can modulate metastasis via transcriptional reprogramming, in the help of essential transcription factors. In this review, we summarized the current understandings of ISR in cancer metastasis from the perspective of transcriptional regulation.
ABSTRACT
Mammary morphogenesis is an orchestrated process involving differentiation, proliferation and organization of cells to form a bi-layered epithelial network of ducts and lobules embedded in stromal tissue. We have engineered a 3D biomimetic human breast that makes it possible to study how stem cell fate decisions translate to tissue-level structure and function. Using this advancement, we describe the mechanism by which breast epithelial cells build a complex three-dimensional, multi-lineage tissue by signaling through a collagen receptor. Discoidin domain receptor tyrosine kinase 1 induces stem cells to differentiate into basal cells, which in turn stimulate luminal progenitor cells via Notch signaling to differentiate and form lobules. These findings demonstrate how human breast tissue regeneration is triggered by transmission of signals from the extracellular matrix through an epithelial bilayer to coordinate structural changes that lead to formation of a complex ductal-lobular network.