Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Mol Sci ; 19(4)2018 Mar 27.
Article in English | MEDLINE | ID: mdl-29584629

ABSTRACT

Human adipose-derived mesenchymal stem cells (Ad-MSCs) have been proposed as suitable option for cell-based therapies to support bone regeneration. In the bone environment, Ad-MSCs will receive stimuli from resident cells that may favor their osteogenic differentiation. There is recent evidence that this process can be further improved by extremely low frequency pulsed electromagnetic fields (ELF-PEMFs). Thus, the project aimed at (i) investigating whether co-culture conditions of human osteoblasts (OBs) and Ad-MSCs have an impact on their proliferation and osteogenic differentiation; (ii) whether this effect can be further improved by repetitive exposure to two specific ELF-PEMFs (16 and 26 Hz); (iii) and the effect of these ELF-PEMFs on human osteoclasts (OCs). Osteogenic differentiation was improved by co-culturing OBs and Ad-MSCs when compared to the individual mono-cultures. An OB to Ad-MSC ratio of 3:1 had best effects on total protein content, alkaline phosphatase (AP) activity, and matrix mineralization. Osteogenic differentiation was further improved by both ELF-PEMFs investigated. Interestingly, only repetitive exposure to 26 Hz ELF-PEMF increased Trap5B activity in OCs. Considering this result, a treatment with gradually increasing frequency might be of interest, as the lower frequency (16 Hz) could enhance bone formation, while the higher frequency (26 Hz) could enhance bone remodeling.


Subject(s)
Adipose Tissue/cytology , Coculture Techniques/methods , Osteoblasts/cytology , Osteogenesis , Adipose Tissue/metabolism , Aged , Aged, 80 and over , Alkaline Phosphatase/metabolism , Cell Differentiation , Cell Proliferation , Cell Survival , Electromagnetic Fields , Female , Humans , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Middle Aged , Osteoblasts/metabolism , Osteoclasts/cytology , Osteoclasts/metabolism
2.
J Clin Med ; 8(11)2019 Nov 17.
Article in English | MEDLINE | ID: mdl-31744243

ABSTRACT

Extremely low-frequency pulsed electromagnetic field (ELF-PEMF) therapy is proposed to support bone healing after injuries and surgical procedures, being of special interest for elderly patients. This study aimed at investigating the effect of a specific ELF-PEMF, recently identified to support osteoblast function in vitro, on bone healing after high tibial osteotomy (HTO). Patients who underwent HTO were randomized to ELF-PEMF or placebo treatment, both applied by optically identical external devices 7 min per day for 30 days following surgery. Osseous consolidation was evaluated by post-surgical X-rays (7 and 14 weeks). Serum markers were quantified by ELISA. Data were compared by a two-sided t-test (α = 0.05). Device readouts showed excellent therapy compliance. Baseline parameters, including age, sex, body mass index, wedge height and blood cell count, were comparable between both groups. X-rays revealed faster osseous consolidation for ELF-PEMF compared to placebo treatment, which was significant in patients ≥50 years (∆mean = 0.68%/week; p = 0.003). Findings are supported by post-surgically increased bone-specific alkaline phosphatase serum levels following ELF-PEMF, compared to placebo (∆mean = 2.2 µg/L; p = 0.029) treatment. Adverse device effects were not reported. ELF-PEMF treatment showed a tendency to accelerate osseous consolidation after HTO. This effect was stronger and more significant for patients ≥50 years. This ELF-PEMF treatment might represent a promising adjunct to conventional therapy supporting osseous consolidation in elderly patients.

3.
Sci Rep ; 7(1): 14544, 2017 11 06.
Article in English | MEDLINE | ID: mdl-29109418

ABSTRACT

Recently, we identified a specific extremely low-frequency pulsed electromagnetic field (ELF-PEMF) that supports human osteoblast (hOBs) function in an ERK1/2-dependent manner, suggesting reactive oxygen species (ROS) being key regulators in this process. Thus, this study aimed at investigating how ELF-PEMF exposure can modulate hOBs function via ROS. Our results show that single exposure to ELF-PEMF induced ROS production in hOBs, without reducing intracellular glutathione. Repetitive exposure (>3) to ELF-PEMF however reduced ROS-levels, suggesting alterations in the cells antioxidative stress response. The main ROS induced by ELF-PEMF were •O2- and H2O2, therefore expression/activity of antioxidative enzymes related to these ROS were further investigated. ELF-PEMF exposure induced expression of GPX3, SOD2, CAT and GSR on mRNA, protein and enzyme activity level. Scavenging •O2- and H2O2 diminished the ELF-PEMF effect on hOBs function (AP activity and mineralization). Challenging the hOBs with low amounts of H2O2 on the other hand improved hOBs function. In summary, our data show that ELF-PEMF treatment favors differentiation of hOBs by producing non-toxic amounts of ROS, which induces antioxidative defense mechanisms in these cells. Thus, ELF-PEMF treatment might represent an interesting adjunct to conventional therapy supporting bone formation under oxidative stress conditions, e.g. during fracture healing.


Subject(s)
Antioxidants/metabolism , Electromagnetic Fields , Hydrogen Peroxide/metabolism , Osteoblasts/metabolism , Reactive Oxygen Species/metabolism , Superoxides/metabolism , Catalase/metabolism , Glutathione Peroxidase/metabolism , Humans , Superoxide Dismutase/metabolism
4.
Bone Rep ; 3: 48-56, 2015 Dec.
Article in English | MEDLINE | ID: mdl-28377966

ABSTRACT

For many years electromagnetic fields (EMFs) have been used clinically with various settings as an exogenous stimulation method to promote fracture healing. However, underlying mechanisms of action and EMF parameters responsible for certain effects remain unclear. Our aim was to investigate the influence of defined EMFs on human osteoblasts' and osteoclasts' viability and function. Primary human osteoblasts and osteoclasts were treated 3 times weekly for 21 days during their maturation process using the Somagen® device (Sachtleben GmbH, Hamburg, Germany), generating defined extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs). Certain ELF-PEMF treatment significantly increased the total protein content (up to 66%), mitochondrial activity (up to 91.1%) and alkaline phosphatase (AP) activity (up to 129.9%) of human osteoblasts during the entire differentiation process. Furthermore, ELF-PEMF treatment enhanced formation of mineralized matrix (up to 276%). Interestingly, ELF-PEMF dependent induction of AP activity and matrix mineralization was strongly donor dependent - only osteoblasts with a poor initial osteoblast function responded to the ELF-PEMF treatment. As a possible regulatory mechanism, activation of the ERK1/2 signaling pathway was identified. Maturation of osteoclasts from human monocytes was not affected by the ELF-PEMF treatment. In summary the results indicate that a specific ELF-PEMF treatment with the Somagen® device improves viability and maturation of osteoblasts, while osteoclast viability and maturation was not affected. Hence, ELF-PEMF might represent an interesting adjunct to conventional therapy supporting bone formation during fracture healing or even for the treatment of osteoporosis.

5.
Biotechniques ; 36(6): 1030-7, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15211754

ABSTRACT

The aim of this study was to determine the impact of ischemia on gene and protein expression profiles of healthy and malignant colon tissue and, thus, on screening studies for identification of molecular targets and diagnostic molecular patterns. Healthy and malignant colon tissue were snap-frozen at various time points (3-30 min) after colon resection. Gene and protein expression were determined by microarray (HG-U133A chips) and surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) technology (CM10 chips, SAX2 chips, and IMAC3Ni chips), respectively. Real-time reverse transcription PCR (RT-PCR) was used for comparative measurement of expression of particular genes. Initial changes of gene and protein expression profiles were already observed 5-8 min after colon resection. Fifteen minutes after surgery, 10%-15% of molecules, and after 30 min, 20% of all detectable genes and proteins, respectively, differed significantly from the baseline values. Significant changes of expression were found in most functional groups. As confirmed by real-time RT-PCR, this included not only known hypoxia-related molecules (HIF-1 alpha, c-fos, HO-1) but also cytoskeletal genes (e.g., CK20) and tumor-associated antigens (e.g., CEA). In conclusion, preanalytical factors, such as tissue ischemia time, dramatically affect molecular data. Control of these variables is mandatory to obtain reliable data in screening programs for molecular targets and diagnostic molecular patterns.


Subject(s)
Colonic Neoplasms/genetics , Colonic Neoplasms/surgery , Gene Expression Profiling/methods , Ischemia/genetics , Oligonucleotide Array Sequence Analysis/methods , Specimen Handling/methods , Tissue Preservation/methods , Artifacts , Humans , Reproducibility of Results , Sensitivity and Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
6.
Proteomics Clin Appl ; 1(6): 536-44, 2007 Jun.
Article in English | MEDLINE | ID: mdl-21136704

ABSTRACT

Colorectal cancer is the second leading cause of cancer death, and it develops from benign colorectal adenomas in over 95% of patients. Early detection of these cancer precursors by screening tests and their removal can potentially eradicate more than 95% of colorectal cancers before they develop. To discover sensitive and specific biomarkers for improvement of pre-clinical diagnosis of colorectal adenoma and cancer, we analysed in two independent studies (n = 87 and n = 83 patients) serum samples from colorectal cancer (stage III), colorectal adenoma and control patients using SELDI-TOF-MS. Extensive statistical analysis was performed to establish homogeneous patient groups based on their clinical data. Two biomarkers that were each able to distinguish control patients from either colorectal adenoma or colorectal cancer patients (p<0.001) were identified as transthyretin (pre-albumin) and C3a-desArg by MS/MS and were further validated by antibody-based assays (radial immunodiffusion, ELISA). A combination of both proteins clearly indicated the presence of colorectal adenoma or carcinoma. Using a cut-off of <0.225 g/L for transthyretin and >1974 ng/mL for C3a-desArg, we found a sensitivity and specificity for colorectal adenoma of 96% and 70%, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL