Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Nat Commun ; 15(1): 5748, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982041

ABSTRACT

Autoimmune thyroid disease (AITD) is a common autoimmune disease. In a GWAS meta-analysis of 110,945 cases and 1,084,290 controls, 290 sequence variants at 225 loci are associated with AITD. Of these variants, 115 are previously unreported. Multiomics analysis yields 235 candidate genes outside the MHC-region and the findings highlight the importance of genes involved in T-cell regulation. A rare 5'-UTR variant (rs781745126-T, MAF = 0.13% in Iceland) in LAG3 has the largest effect (OR = 3.42, P = 2.2 × 10-16) and generates a novel start codon for an open reading frame upstream of the canonical protein translation initiation site. rs781745126-T reduces mRNA and surface expression of the inhibitory immune checkpoint LAG-3 co-receptor on activated lymphocyte subsets and halves LAG-3 levels in plasma among heterozygotes. All three homozygous carriers of rs781745126-T have AITD, of whom one also has two other T-cell mediated diseases, that is vitiligo and type 1 diabetes. rs781745126-T associates nominally with vitiligo (OR = 5.1, P = 6.5 × 10-3) but not with type 1 diabetes. Thus, the effect of rs781745126-T is akin to drugs that inhibit LAG-3, which unleash immune responses and can have thyroid dysfunction and vitiligo as adverse events. This illustrates how a multiomics approach can reveal potential drug targets and safety concerns.


Subject(s)
Antigens, CD , Codon, Initiator , Genetic Predisposition to Disease , Lymphocyte Activation Gene 3 Protein , Humans , Codon, Initiator/genetics , Antigens, CD/genetics , Antigens, CD/metabolism , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Female , Polymorphism, Single Nucleotide , Vitiligo/genetics , Male , Genome-Wide Association Study , Thyroiditis, Autoimmune/genetics , 5' Untranslated Regions/genetics , Case-Control Studies , Iceland , Adult
3.
Nat Genet ; 56(5): 827-837, 2024 May.
Article in English | MEDLINE | ID: mdl-38632349

ABSTRACT

We report a multi-ancestry genome-wide association study on liver cirrhosis and its associated endophenotypes, alanine aminotransferase (ALT) and γ-glutamyl transferase. Using data from 12 cohorts, including 18,265 cases with cirrhosis, 1,782,047 controls, up to 1 million individuals with liver function tests and a validation cohort of 21,689 cases and 617,729 controls, we identify and validate 14 risk associations for cirrhosis. Many variants are located near genes involved in hepatic lipid metabolism. One of these, PNPLA3 p.Ile148Met, interacts with alcohol intake, obesity and diabetes on the risk of cirrhosis and hepatocellular carcinoma (HCC). We develop a polygenic risk score that associates with the progression from cirrhosis to HCC. By focusing on prioritized genes from common variant analyses, we find that rare coding variants in GPAM associate with lower ALT, supporting GPAM as a potential target for therapeutic inhibition. In conclusion, this study provides insights into the genetic underpinnings of cirrhosis.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Liver Cirrhosis , Humans , Liver Cirrhosis/genetics , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/genetics , Alanine Transaminase/blood , Polymorphism, Single Nucleotide , Male , Lipase/genetics , Female , gamma-Glutamyltransferase/genetics , Membrane Proteins/genetics , Cohort Studies , Case-Control Studies , Multifactorial Inheritance/genetics , Risk Factors , Genetic Variation
4.
Nat Commun ; 15(1): 6644, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103364

ABSTRACT

Multiple myeloma (MM) is an incurable malignancy of plasma cells. Epidemiological studies indicate a substantial heritable component, but the underlying mechanisms remain unclear. Here, in a genome-wide association study totaling 10,906 cases and 366,221 controls, we identify 35 MM risk loci, 12 of which are novel. Through functional fine-mapping and Mendelian randomization, we uncover two causal mechanisms for inherited MM risk: longer telomeres; and elevated levels of B-cell maturation antigen (BCMA) and interleukin-5 receptor alpha (IL5RA) in plasma. The largest increase in BCMA and IL5RA levels is mediated by the risk variant rs34562254-A at TNFRSF13B. While individuals with loss-of-function variants in TNFRSF13B develop B-cell immunodeficiency, rs34562254-A exerts a gain-of-function effect, increasing MM risk through amplified B-cell responses. Our results represent an analysis of genetic MM predisposition, highlighting causal mechanisms contributing to MM development.


Subject(s)
B-Cell Maturation Antigen , Genetic Predisposition to Disease , Genome-Wide Association Study , Multiple Myeloma , Polymorphism, Single Nucleotide , Multiple Myeloma/genetics , Humans , B-Cell Maturation Antigen/genetics , Mendelian Randomization Analysis , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Case-Control Studies , Transmembrane Activator and CAML Interactor Protein/genetics , Male , Telomere/genetics
SELECTION OF CITATIONS
SEARCH DETAIL