Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Neurosci ; 41(22): 4768-4781, 2021 06 02.
Article in English | MEDLINE | ID: mdl-33911021

ABSTRACT

Insulin-like growth factor-I (IGF-I) signaling plays a key role in learning and memory processes. While the effects of IGF-I on neurons have been studied extensively, the involvement of astrocytes in IGF-I signaling and the consequences on synaptic plasticity and animal behavior remain unknown. We have found that IGF-I induces long-term potentiation (LTPIGFI) of the postsynaptic potentials that is caused by a long-term depression of inhibitory synaptic transmission in mice. We have demonstrated that this long-lasting decrease in the inhibitory synaptic transmission is evoked by astrocytic activation through its IGF-I receptors (IGF-IRs). We show that LTPIGFI not only increases the output of pyramidal neurons, but also favors the NMDAR-dependent LTP, resulting in the crucial information processing at the barrel cortex since specific deletion of IGF-IR in cortical astrocytes impairs the whisker discrimination task. Our work reveals a novel mechanism and functional consequences of IGF-I signaling on cortical inhibitory synaptic plasticity and animal behavior, revealing that astrocytes are key elements in these processes.SIGNIFICANCE STATEMENT Insulin-like growth factor-I (IGF-I) signaling plays key regulatory roles in multiple processes of brain physiology, such as learning and memory. Yet, the underlying mechanisms remain largely undefined. Here we demonstrate that astrocytes respond to IGF-I signaling, elevating their intracellular Ca2+ and stimulating the release of ATP/adenosine, which triggers the LTD of cortical inhibitory synapses, thus regulating the behavioral task performance related to cortical sensory information processing. Therefore, the present work represents a major conceptual advance in our knowledge of the cellular basis of IGF-I signaling in brain function, by including for the first time astrocytes as key mediators of IGF-I actions on synaptic plasticity, cortical sensory information discrimination and animal behavior.


Subject(s)
Adenosine/metabolism , Astrocytes/metabolism , Neuronal Plasticity/physiology , Receptor, IGF Type 1/metabolism , Somatosensory Cortex/physiology , Animals , Behavior, Animal/physiology , Down-Regulation , Learning/physiology , Long-Term Synaptic Depression/physiology , Male , Memory/physiology , Mice , Mice, Inbred C57BL , Pyramidal Cells/physiology
2.
Cereb Cortex ; 28(5): 1568-1581, 2018 05 01.
Article in English | MEDLINE | ID: mdl-28334325

ABSTRACT

Brain-derived neurotrophic factor (BDNF) plays a critical role in modulating plasticity in sensory cortices. Indeed, a BDNF-dependent long-term potentiation (LTP) at distal basal excitatory synapses of Layer 5 pyramidal neurons (L5PNs) has been demonstrated in disinhibited rat barrel cortex slices. Although it is well established that this LTP requires the pairing of excitatory postsynaptic potentials (PSPs) with Ca2+ spikes, its induction when synaptic inhibition is working remains unexplored. Here we show that low-frequency stimulation at basal dendrites of L5PNs is able to trigger a PSP followed by an action potential (AP) and a slow depolarization (termed PSP-Ca2+ response) in thalamocortical slices without blocking synaptic inhibition. We demonstrate that AP barrage-mediated release of endocannabinoids (eCBs) from the recorded L5PNs induces PSP-Ca2+ response facilitation and BDNF-dependent LTP. Indeed, this LTP requires the type 1 cannabinoid receptors activation, is prevented by postsynaptic intracellular 1,2-bis(2-aminophenoxy) ethane-N,N,N,N'-tetraacetic acid (BAPTA) or the anandamide membrane transporter inhibitor AM404, and only occurs in L5PNs neurons showing depolarization-induced suppression of inhibition. Additionally, electrical stimulation at the posteromedial thalamic nucleus induced similar response and LTP. These results reveal a novel form of eCB-dependent LTP at L5PNs that could be relevant in the processing of sensory information in the barrel cortex.


Subject(s)
Cerebral Cortex/cytology , Endocannabinoids/metabolism , Long-Term Potentiation/physiology , Pyramidal Cells/physiology , Synaptic Transmission/physiology , 2-Amino-5-phosphonovalerate/pharmacology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Animals , Animals, Newborn , Arachidonic Acids/pharmacology , Benzoxazines/pharmacology , Calcium Channel Blockers/pharmacology , Cerebral Cortex/physiology , Excitatory Amino Acid Antagonists/pharmacology , Extracellular Fluid/drug effects , Extracellular Fluid/metabolism , Long-Term Potentiation/drug effects , Morpholines/pharmacology , Naphthalenes/pharmacology , Neural Pathways/drug effects , Neural Pathways/physiology , Peptides, Cyclic/pharmacology , Pyramidal Cells/drug effects , Rats , Rats, Sprague-Dawley , Receptor, trkB/antagonists & inhibitors , Synaptic Transmission/drug effects , Thalamus/cytology
3.
Cereb Cortex ; 27(1): 852-862, 2017 01 01.
Article in English | MEDLINE | ID: mdl-26620268

ABSTRACT

Cholinergic mechanisms in the hippocampus regulate forms of synaptic plasticity linked with cognition and spatial navigation, but the underlying mechanisms remain largely unknown. Here, in rat hippocampal CA1 pyramidal cells under blockade of ionotropic glutamate receptors, we report that a single acetylcholine pulse and repeated depolarization activated a robust and enduring postsynaptic depolarization-induced enhancement of inhibition (DEI) that masked a presynaptic depolarization-induced suppression of inhibition (DSI). Increased cytosolic Ca2+ and M1-muscarinic receptor activation caused the rise in voltage-sensitive α5ßγ2-containing γ-aminobutyric acid type-A receptors that generated DEI. In summary, this muscarinic-mediated activity-dependent plasticity rapidly transfers depolarization effects on inhibition from presynaptic suppression or DSI to postsynaptic enhancement or DEI, a change potentially relevant in behavior.


Subject(s)
Acetylcholine/metabolism , CA1 Region, Hippocampal/metabolism , Membrane Potentials/physiology , Neural Inhibition/physiology , Pyramidal Cells/metabolism , Animals , CA1 Region, Hippocampal/drug effects , Calcium/metabolism , Cytosol/drug effects , Cytosol/metabolism , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Membrane Potentials/drug effects , Neural Inhibition/drug effects , Patch-Clamp Techniques , Pyramidal Cells/drug effects , Rats, Wistar , Receptor, Cannabinoid, CB1/metabolism , Receptor, Muscarinic M1/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, GABA-A/metabolism , Tissue Culture Techniques
4.
Proc Natl Acad Sci U S A ; 111(26): E2741-50, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24938789

ABSTRACT

Acetylcholine (ACh) regulates forms of plasticity that control cognitive functions but the underlying mechanisms remain largely unknown. ACh controls the intrinsic excitability, as well as the synaptic excitation and inhibition of CA1 hippocampal pyramidal cells (PCs), cells known to participate in circuits involved in cognition and spatial navigation. However, how ACh regulates inhibition in function of postsynaptic activity has not been well studied. Here we show that in rat PCs, a brief pulse of ACh or a brief stimulation of cholinergic septal fibers combined with repeated depolarization induces strong long-term enhancement of GABAA inhibition (GABAA-LTP). Indeed, this enhanced inhibition is due to the increased activation of α5ßγ2 subunit-containing GABAA receptors by the GABA released. GABAA-LTP requires the activation of M1-muscarinic receptors and an increase in cytosolic Ca(2+). In the absence of PC depolarization ACh triggered a presynaptic depolarization-induced suppression of inhibition (DSI), revealing that postsynaptic activity gates the effects of ACh from presynaptic DSI to postsynaptic LTP. These results provide key insights into mechanisms potentially linked with cognitive functions, spatial navigation, and the homeostatic control of abnormal hyperexcitable states.


Subject(s)
Acetylcholine/metabolism , CA1 Region, Hippocampal/physiology , Neuronal Plasticity/physiology , Pyramidal Cells/physiology , Receptors, GABA-A/metabolism , Synaptic Potentials/physiology , Animals , Calcium/metabolism , Electric Stimulation , Patch-Clamp Techniques , Rats , Rats, Wistar , Receptor, Muscarinic M1/metabolism
5.
PLoS Biol ; 10(2): e1001259, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22347811

ABSTRACT

Long-term potentiation (LTP) of synaptic transmission represents the cellular basis of learning and memory. Astrocytes have been shown to regulate synaptic transmission and plasticity. However, their involvement in specific physiological processes that induce LTP in vivo remains unknown. Here we show that in vivo cholinergic activity evoked by sensory stimulation or electrical stimulation of the septal nucleus increases Ca²âº in hippocampal astrocytes and induces LTP of CA3-CA1 synapses, which requires cholinergic muscarinic (mAChR) and metabotropic glutamate receptor (mGluR) activation. Stimulation of cholinergic pathways in hippocampal slices evokes astrocyte Ca²âº elevations, postsynaptic depolarizations of CA1 pyramidal neurons, and LTP of transmitter release at single CA3-CA1 synapses. Like in vivo, these effects are mediated by mAChRs, and this cholinergic-induced LTP (c-LTP) also involves mGluR activation. Astrocyte Ca²âº elevations and LTP are absent in IP3R2 knock-out mice. Downregulating astrocyte Ca²âº signal by loading astrocytes with BAPTA or GDPßS also prevents LTP, which is restored by simultaneous astrocyte Ca²âº uncaging and postsynaptic depolarization. Therefore, cholinergic-induced LTP requires astrocyte Ca²âº elevations, which stimulate astrocyte glutamate release that activates mGluRs. The cholinergic-induced LTP results from the temporal coincidence of the postsynaptic activity and the astrocyte Ca²âº signal simultaneously evoked by cholinergic activity. Therefore, the astrocyte Ca²âº signal is necessary for cholinergic-induced synaptic plasticity, indicating that astrocytes are directly involved in brain storage information.


Subject(s)
Astrocytes/physiology , Cholinergic Neurons/physiology , Long-Term Potentiation , Synapses/physiology , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Atropine/pharmacology , Calcium Signaling , Cholinergic Neurons/drug effects , Cholinergic Neurons/metabolism , Glutamic Acid/metabolism , Glycine/analogs & derivatives , Glycine/pharmacology , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/physiology , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Membrane Potentials/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscarinic Antagonists/pharmacology , Rats , Rats, Wistar , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, Metabotropic Glutamate/metabolism , Synapses/drug effects , Synapses/metabolism , Synaptic Transmission/drug effects
6.
Front Cell Neurosci ; 18: 1390663, 2024.
Article in English | MEDLINE | ID: mdl-38910964

ABSTRACT

Insulin-like growth factor-I (IGF-I) plays a key role in the modulation of synaptic plasticity and is an essential factor in learning and memory processes. However, during aging, IGF-I levels are decreased, and the effect of this decrease in the induction of synaptic plasticity remains unknown. Here we show that the induction of N-methyl-D-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP) at layer 2/3 pyramidal neurons (PNs) of the mouse barrel cortex is favored or prevented by IGF-I (10 nM) or IGF-I (7 nM), respectively, when IGF-I is applied 1 h before the induction of Hebbian LTP. Analyzing the cellular basis of this bidirectional control of synaptic plasticity, we observed that while 10 nM IGF-I generates LTP (LTPIGF-I) of the post-synaptic potentials (PSPs) by inducing long-term depression (LTD) of the inhibitory post-synaptic currents (IPSCs), 7 nM IGF-I generates LTD of the PSPs (LTDIGF-I) by inducing LTD of the excitatory post-synaptic currents (EPSCs). This bidirectional effect of IGF-I is supported by the observation of IGF-IR immunoreactivity at both excitatory and inhibitory synapses. Therefore, IGF-I controls the induction of Hebbian NMDAR-dependent plasticity depending on its concentration, revealing novel cellular mechanisms of IGF-I on synaptic plasticity and in the learning and memory machinery of the brain.

7.
Cell Death Dis ; 15(7): 478, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961086

ABSTRACT

A recent approach to promote central nervous system (CNS) regeneration after injury or disease is direct conversion of somatic cells to neurons. This is achieved by transduction of viral vectors that express neurogenic transcription factors. In this work we propose adult human mucosal olfactory ensheathing glia (hmOEG) as a candidate for direct reprogramming to neurons due to its accessibility and to its well-characterized neuroregenerative capacity. After induction of hmOEG with the single neurogenic transcription factor NEUROD1, the cells under study exhibited morphological and immunolabeling neuronal features, fired action potentials and expressed glutamatergic and GABAergic markers. In addition, after engraftment of transduced hmOEG cells in the mouse hippocampus, these cells showed specific neuronal labeling. Thereby, if we add to the neuroregenerative capacity of hmOEG cultures the conversion to neurons of a fraction of their population through reprogramming techniques, the engraftment of hmOEG and hmOEG-induced neurons could be a procedure to enhance neural repair after central nervous system injury.


Subject(s)
Neuroglia , Neurons , Humans , Animals , Neuroglia/metabolism , Neuroglia/cytology , Neurons/metabolism , Neurons/cytology , Mice , Adult , Olfactory Mucosa/cytology , Olfactory Mucosa/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Lineage , Hippocampus/cytology , Hippocampus/metabolism , Olfactory Bulb/cytology , Olfactory Bulb/metabolism , Cells, Cultured
8.
Hippocampus ; 23(12): 1439-52, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23966210

ABSTRACT

The precise timing of pre-postsynaptic activity is vital for the induction of long-term potentiation (LTP) or depression (LTD) at many central synapses. We show in synapses of rat CA1 pyramidal neurons in vitro that spike timing dependent plasticity (STDP) protocols that induce LTP at glutamatergic synapses can evoke LTD of inhibitory postsynaptic currents or STDP-iLTD. The STDP-iLTD requires a postsynaptic Ca(2+) increase, a release of endocannabinoids (eCBs), the activation of type-1 endocananabinoid receptors and presynaptic muscarinic receptors that mediate a decreased probability of GABA release. In contrast, the STDP-iLTD is independent of the activation of nicotinic receptors, GABAB Rs and G protein-coupled postsynaptic receptors at pyramidal neurons. We determine that the downregulation of presynaptic Cyclic adenosine monophosphate/protein Kinase A pathways is essential for the induction of STDP-iLTD. These results suggest a novel mechanism by which the activation of cholinergic neurons and retrograde signaling by eCBs can modulate the efficacy of GABAergic synaptic transmission in ways that may contribute to information processing and storage in the hippocampus.


Subject(s)
CA1 Region, Hippocampal/cytology , Endocannabinoids/metabolism , Neurons/physiology , Receptors, Muscarinic/metabolism , Synaptic Transmission/physiology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Action Potentials/drug effects , Animals , Animals, Newborn , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Cholinergic Agents/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , In Vitro Techniques , Male , Neurons/drug effects , Patch-Clamp Techniques , Piperidines/pharmacology , Pyrazoles/pharmacology , Rats , Rats, Sprague-Dawley , Synaptic Transmission/drug effects , Valine/analogs & derivatives , Valine/pharmacology
9.
Front Mol Neurosci ; 16: 1110356, 2023.
Article in English | MEDLINE | ID: mdl-36910262

ABSTRACT

An approach to generate new neurons after central nervous system injury or disease is direct reprogramming of the individual's own somatic cells into differentiated neurons. This can be achieved either by transduction of viral vectors that express neurogenic transcription factors and/or through induction with small molecules, avoiding introducing foreign genetic material in target cells. In this work, we propose olfactory ensheathing glia (OEG) as a candidate for direct reprogramming to neurons with small molecules due to its well-characterized neuro-regenerative capacity. After screening different combinations of small molecules in different culture conditions, only partial reprogramming was achieved: induced cells expressed neuronal markers but lacked the ability of firing action potentials. Our work demonstrates that direct conversion of adult olfactory ensheathing glia to mature, functional neurons cannot be induced only with pharmacological tools.

10.
Nat Commun ; 14(1): 2303, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085487

ABSTRACT

The type-1 cannabinoid receptor (CB1R) is widely expressed in excitatory and inhibitory nerve terminals, and by suppressing neurotransmitter release, its activation modulates neural circuits and brain function. While the interaction of CB1R with various intracellular proteins is thought to alter receptor signaling, the identity and role of these proteins are poorly understood. Using a high-throughput proteomic analysis complemented with an array of in vitro and in vivo approaches in the mouse brain, we report that the C-terminal, intracellular domain of CB1R interacts specifically with growth-associated protein of 43 kDa (GAP43). The CB1R-GAP43 interaction occurs selectively at mossy cell axon boutons, which establish excitatory synapses with dentate granule cells in the hippocampus. This interaction impairs CB1R-mediated suppression of mossy cell to granule cell transmission, thereby inhibiting cannabinoid-mediated anti-convulsant activity in mice. Thus, GAP43 acts as a synapse type-specific regulatory partner of CB1R that hampers CB1R-mediated effects on hippocampal circuit function.


Subject(s)
Cannabinoids , Mice , Animals , Cannabinoids/pharmacology , Cannabinoids/metabolism , Proteomics , Hippocampus/metabolism , Synaptic Transmission , Synapses/metabolism , Receptors, Cannabinoid/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism
11.
J Neurophysiol ; 108(6): 1656-68, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22723675

ABSTRACT

Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions, but the underlying cellular mechanisms are largely unknown. We analyzed the effects of acetylcholine (ACh) on synaptic transmission and cell excitability in rat "barrel cortex" layer V (L5) pyramidal neurons in vitro. ACh through nicotinic and M1 muscarinic receptors enhanced excitatory postsynaptic currents and through nicotinic and M2 muscarinic receptors reduced inhibitory postsynaptic currents. These effects increased excitability and contributed to the generation of Ca(2+) spikes and bursts of action potentials (APs) when inputs in basal dendrites were stimulated. Ca(2+) spikes were mediated by activation of NMDA receptors (NMDARs) and L-type voltage-gated Ca(2+) channels. Additionally, we demonstrate in vivo that basal forebrain stimulation induced an atropine-sensitive increase of L5 AP responses evoked by vibrissa deflection, an effect mainly due to the enhancement of an NMDAR component. Therefore, ACh modified the excitatory/inhibitory balance and switched L5 pyramidal neurons to a bursting mode that caused a potent and sustained response enhancement with possible fundamental consequences for the function of the barrel cortex.


Subject(s)
Acetylcholine/metabolism , Excitatory Postsynaptic Potentials , Inhibitory Postsynaptic Potentials , Neocortex/physiology , Pyramidal Cells/physiology , Action Potentials , Animals , Atropine/pharmacology , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Calcium Signaling , Cholinergic Antagonists/pharmacology , Dendrites/metabolism , Dendrites/physiology , Neocortex/metabolism , Pyramidal Cells/metabolism , Rats , Rats, Wistar , Receptor, Muscarinic M1/antagonists & inhibitors , Receptor, Muscarinic M1/metabolism , Receptor, Muscarinic M2/antagonists & inhibitors , Receptor, Muscarinic M2/metabolism , Receptors, GABA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, Nicotinic/metabolism , Synaptic Transmission , Vibrissae/physiology
12.
Cells ; 11(10)2022 05 14.
Article in English | MEDLINE | ID: mdl-35626678

ABSTRACT

Insulin-like growth factor-I (IGF-I) signaling plays a key role in learning and memory. IGF-I increases the spiking and induces synaptic plasticity in the mice barrel cortex (Noriega-Prieto et al., 2021), favoring the induction of the long-term potentiation (LTP) by Spike Timing-Dependent Protocols (STDP) (Noriega-Prieto et al., 2021). Here, we studied whether these IGF-I effects depend on endocannabinoids (eCBs) and nitric oxide (NO). We recorded both excitatory postsynaptic currents (EPSCs) and inhibitory postsynaptic currents (IPSCs) evoked by stimulation of the basal dendrites of layer II/III pyramidal neurons of the Barrel Cortex and analyzed the effect of IGF-I in the presence of a CB1R antagonist, AM251, and inhibitor of the NO synthesis, L-NAME, to prevent the eCBs and the NO-mediated signaling. Interestingly, L-NAME abolished any modulatory effect of the IGF-I-induced excitatory and inhibitory transmission changes, suggesting the essential role of NO. Surprisingly, the inhibition of CB1Rs did not only block the potentiation of EPSCs but reversed to a depression, highlighting the remarkable functions of the eCB system. In conclusion, eCBs and NO play a vital role in deciding the sign of the effects induced by IGF-I in the neocortex, suggesting a neuromodulatory interplay among IGF-I, NO, and eCBs.


Subject(s)
Endocannabinoids , Nitric Oxide , Animals , Endocannabinoids/pharmacology , Endocannabinoids/physiology , Insulin-Like Growth Factor I/pharmacology , Mice , NG-Nitroarginine Methyl Ester , Neuronal Plasticity/physiology
13.
J Neurosci ; 30(33): 11032-42, 2010 Aug 18.
Article in English | MEDLINE | ID: mdl-20720110

ABSTRACT

We had described a muscarinic-mediated long-term synaptic enhancement at Schaffer collateral synapses caused by the insertion of AMPARs in spines of rat hippocampal CA1 pyramidal neurons that requires Ca(2+) release from IP3-sensitive stores (Fernández de Sevilla et al., 2008). We now show that this AMPA-mediated LTP(IP3) is precisely matched by an amplification of NMDAR-mediated transmission. The enhanced AMPAR transmission involves SNARE protein activity and CaMKII activation. The amplification of NMDA transmission requires combined CaMKII, PKC, and SRC kinase activity without detectable surface incorporation of NMDARs, suggesting that changes in receptor properties mediate this process. The enhanced AMPAR- and NMDAR-mediated transmission markedly reduce the induction threshold of "Hebbian" LTP. We conclude that both modes of glutamatergic synaptic potentiation may play a critical functional role in the regulation of the learning machinery of the brain by adding flexibility to the demands of the hippocampal network.


Subject(s)
CA1 Region, Hippocampal/physiology , Long-Term Potentiation/physiology , Pyramidal Cells/physiology , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptic Transmission/physiology , Animals , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Dendritic Spines/physiology , Excitatory Postsynaptic Potentials/physiology , Female , Glutamic Acid/metabolism , In Vitro Techniques , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Male , Protein Kinase C/metabolism , Rats , Rats, Wistar , Receptor, Muscarinic M1/metabolism , SNARE Proteins/metabolism , src-Family Kinases/metabolism
14.
Elife ; 102021 04 01.
Article in English | MEDLINE | ID: mdl-33792539

ABSTRACT

Insulin-like growth factor-1 (IGF-1) plays a key role in synaptic plasticity, spatial learning, and anxiety-like behavioral processes. While IGF-1 regulates neuronal firing and synaptic transmission in many areas of the central nervous system, its signaling and consequences on excitability, synaptic plasticity, and animal behavior dependent on the prefrontal cortex remain unexplored. Here, we show that IGF-1 induces a long-lasting depression of the medium and slow post-spike afterhyperpolarization (mAHP and sAHP), increasing the excitability of layer 5 pyramidal neurons of the rat infralimbic cortex. Besides, IGF-1 mediates a presynaptic long-term depression of both inhibitory and excitatory synaptic transmission in these neurons. The net effect of this IGF-1-mediated synaptic plasticity is a long-term potentiation of the postsynaptic potentials. Moreover, we demonstrate that IGF-1 favors the fear extinction memory. These results show novel functional consequences of IGF-1 signaling, revealing IGF-1 as a key element in the control of the fear extinction memory.


Subject(s)
Cortical Excitability/drug effects , Extinction, Psychological/drug effects , Fear/drug effects , Insulin-Like Growth Factor I/administration & dosage , Neuronal Plasticity/drug effects , Pyramidal Cells/drug effects , Animals , Conditioning, Classical , Male , Rats , Rats, Sprague-Dawley
15.
J Neurophysiol ; 103(1): 47-54, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19864442

ABSTRACT

The cellular mechanisms that mediate spike timing-dependent plasticity (STDP) are largely unknown. We studied in vitro in CA1 pyramidal neurons the contribution of AMPA and N-methyl-d-aspartate (NMDA) components of Schaffer collateral (SC) excitatory postsynaptic potentials (EPSPs; EPSP(AMPA) and EPSP(NMDA)) and of the back-propagating action potential (BAP) to the long-term potentiation (LTP) induced by a STDP protocol that consisted in pairing an EPSP and a BAP. Transient blockade of EPSP(AMPA) with 7-nitro-2,3-dioxo-1,4-dihydroquinoxaline-6-carbonitrile (CNQX) during the STDP protocol prevented LTP. Contrastingly LTP was induced under transient inhibition of EPSP(AMPA) by combining SC stimulation, an imposed EPSP(AMPA)-like depolarization, and BAP or by coupling the EPSP(NMDA) evoked under sustained depolarization (approximately -40 mV) and BAP. In Mg(2+)-free solution EPSP(NMDA) and BAP also produced LTP. Suppression of EPSP(NMDA) or BAP always prevented LTP. Thus activation of NMDA receptors and BAPs are needed but not sufficient because AMPA receptor activation is also obligatory for STDP. However, a transient depolarization of another origin that unblocks NMDA receptors and a BAP may also trigger LTP.


Subject(s)
Action Potentials/physiology , CA1 Region, Hippocampal/physiology , Long-Term Potentiation/physiology , Pyramidal Cells/physiology , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Action Potentials/drug effects , Animals , CA1 Region, Hippocampal/drug effects , Central Nervous System Agents/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , In Vitro Techniques , Long-Term Potentiation/drug effects , Magnesium/metabolism , Membrane Potentials/drug effects , Membrane Potentials/physiology , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Patch-Clamp Techniques , Pyramidal Cells/drug effects , Rats , Rats, Wistar , Receptors, AMPA/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Valine/analogs & derivatives , Valine/pharmacology
16.
J Neurosci ; 28(6): 1469-78, 2008 Feb 06.
Article in English | MEDLINE | ID: mdl-18256268

ABSTRACT

Cholinergic-glutamatergic interactions influence forms of synaptic plasticity that are thought to mediate memory and learning. We tested in vitro the induction of long-lasting synaptic enhancement at Schaffer collaterals by acetylcholine (ACh) at the apical dendrite of CA1 pyramidal neurons and in vivo by stimulation of cholinergic afferents. In vitro ACh induced a Ca2+ wave and synaptic enhancement mediated by insertion of AMPA receptors in spines. Activation of muscarinic ACh receptors (mAChRs) and Ca2+ release from inositol 1,4,5-trisphosphate (IP3)-sensitive stores were required for this synaptic enhancement that was insensitive to blockade of NMDA receptors and also triggered by IP3 uncaging. Activation of cholinergic afferents in vivo induced an analogous atropine-sensitive synaptic enhancement. We describe a novel form of synaptic enhancement (LTP(IP3)) that is induced in vitro and in vivo by activation of mAChRs. We conclude that Ca2+ released from postsynaptic endoplasmic reticulum stores is the critical event in the induction of this unique form of long-lasting synaptic enhancement.


Subject(s)
Acetylcholine/physiology , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Long-Term Potentiation/physiology , Pyramidal Cells/metabolism , Acetylcholine/pharmacology , Animals , Calcium/metabolism , Cholinergic Agents/pharmacology , Female , Inositol 1,4,5-Trisphosphate Receptors/agonists , Long-Term Potentiation/drug effects , Male , Neurons/drug effects , Neurons/metabolism , Pyramidal Cells/drug effects , Rats , Rats, Wistar
17.
Neuroscience ; 418: 149-156, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31449986

ABSTRACT

Dendritic calcium (Ca2+) spikes play a key role in the genesis of long-term synaptic plasticity. Although synaptic plasticity in the infralimbic cortex is critical for the extinction of fear-conditioned memory, the role of Ca2+-spikes in the induction of synaptic plasticity at this cortex has not been explored in depth. Here we show that Ca2+-spikes in layer 5 pyramidal neurons (L5 PNs) of the rat infralimbic cortex are crucial in the induction of long-term depression of the excitatory postsynaptic currents (EPSCs). The lack of effect on the postsynaptic currents evoked by puffing glutamate and the changes in the variance of the EPSC amplitude that paralleled its inhibition suggest that this LTD of the EPSCs is mediated presynaptically. However, its induction requires cytosolic calcium elevations because it is prevented when the recorded L5 PN is loaded with BAPTA. Moreover, it depends on the synthesis of nitric oxide (NO) because it is absent on slices incubated with nitric oxidase synthase inhibitor L-NAME. Therefore, Ca2+-spikes can trigger LTD of the ESPCs through the NO dependent presynaptic form of synaptic plasticity, thus providing a novel form of inducing synaptic plasticity at L5 PNs of the rat infralimbic cortex.


Subject(s)
Long-Term Synaptic Depression/physiology , Neuronal Plasticity/physiology , Nitric Oxide/metabolism , Synapses/physiology , Animals , Calcium/metabolism , Dendrites/physiology , Electric Stimulation/methods , Excitatory Postsynaptic Potentials/physiology , Pyramidal Cells/drug effects , Rats, Sprague-Dawley
18.
J Neurosci ; 27(44): 11940-8, 2007 Oct 31.
Article in English | MEDLINE | ID: mdl-17978034

ABSTRACT

Using spike-timing-dependent plasticity (STDP) protocols that consist of pairing an EPSP and a postsynaptic backpropagating action potential (BAP), we investigated the contribution of the changes in EPSP waveform induced by the slow Ca2+-dependent K+-mediated afterhyperpolarization (sAHP) in the regulation of long-term potentiation (LTP). The "temporal window" between Schaffer collateral EPSPs and BAPs in CA1 pyramidal neurons required to induce LTP was narrowed by a reduction of the amplitude and decay time constant of the EPSP, which could be reversed with cyclothiazide. The EPSP changes were caused by the increased conductance induced by activation of the sAHP. Therefore, the EPSP waveform and its regulation by the sAHP are central in determining the duration of the temporal window for STDP, thus providing a possible dynamic regulatory mechanism for the encoding of cognitive processes.


Subject(s)
Action Potentials/physiology , Excitatory Postsynaptic Potentials/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Adrenergic beta-Agonists/pharmacology , Animals , Animals, Newborn , Calcium/metabolism , Dose-Response Relationship, Radiation , Electric Stimulation/methods , Hippocampus/cytology , In Vitro Techniques , Isoproterenol/pharmacology , Patch-Clamp Techniques/methods , Rats , Rats, Wistar , Time Factors
19.
J Neurosci ; 26(15): 4015-25, 2006 Apr 12.
Article in English | MEDLINE | ID: mdl-16611818

ABSTRACT

Somatosensory information, conveyed through the gracilis nucleus (GN), is regulated by descending corticofugal (CF) glutamatergic fibers. In addition, the GN receives cholinergic inputs with still unclear source and functional significance. Using both the in vitro slice and intracellular recording with sharp and patch electrodes and in vivo extracellular single-unit recordings, we analyzed the effects of activation of cholinergic receptors on synaptic, intrinsic, and functional properties of rat GN neurons. The cholinergic agonist carbamilcholine-chloride [carbachol (CCh); 1-10 microM] in vitro (1) induced presynaptic inhibition of EPSPs evoked by both dorsal column and CF stimulation, (2) increased postsynaptic excitability, and (3) amplified the spike output of GN neurons. The inhibition by atropine (1 microM) and pirenzepine (10 microM) of all presynaptic and postsynaptic effects of CCh suggests actions through muscarinic M1 receptors. The above effects were insensitive to nicotinic antagonists. We searched the anatomical origin of the cholinergic projection to the GN throughout the hindbrain and forebrain, and we found that the cholinergic fibers originated mainly in the pontine reticular nucleus (PRN). Electrical stimulation of the PRN amplified sensory responses in the GN in vivo, an effect prevented by topical application of atropine. Our results demonstrate for the first time that cholinergic agonists induce both presynaptic and postsynaptic effects on GN neurons and suggest an important regulatory action of inputs from cholinergic neuronal groups in the pontine reticular formation in the functional control of somatosensory information flow in the GN.


Subject(s)
Cholinergic Agents/pharmacology , Geniculate Bodies/physiology , Synaptic Transmission/physiology , Animals , Calcium Chloride/pharmacology , Electric Stimulation , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Geniculate Bodies/drug effects , In Vitro Techniques , Patch-Clamp Techniques , Rats , Rats, Wistar , Synaptic Transmission/drug effects
20.
Front Cell Neurosci ; 11: 8, 2017.
Article in English | MEDLINE | ID: mdl-28203145

ABSTRACT

According to Hebb's original hypothesis (Hebb, 1949), synapses are reinforced when presynaptic activity triggers postsynaptic firing, resulting in long-term potentiation (LTP) of synaptic efficacy. Long-term depression (LTD) is a use-dependent decrease in synaptic strength that is thought to be due to synaptic input causing a weak postsynaptic effect. Although the mechanisms that mediate long-term synaptic plasticity have been investigated for at least three decades not all question have as yet been answered. Therefore, we aimed at determining the mechanisms that generate LTP or LTD with the simplest possible protocol. Low-frequency stimulation of basal dendrite inputs in Layer 5 pyramidal neurons of the rat barrel cortex induces LTP. This stimulation triggered an EPSP, an action potential (AP) burst, and a Ca2+ spike. The same stimulation induced LTD following manipulations that reduced the Ca2+ spike and Ca2+ signal or the AP burst. Low-frequency whisker deflections induced similar bidirectional plasticity of action potential evoked responses in anesthetized rats. These results suggest that both in vitro and in vivo similar mechanisms regulate the balance between LTP and LTD. This simple induction form of bidirectional hebbian plasticity could be present in the natural conditions to regulate the detection, flow, and storage of sensorimotor information.

SELECTION OF CITATIONS
SEARCH DETAIL