Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Mol Cell ; 84(8): 1527-1540.e7, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38521064

ABSTRACT

Nucleolar stress (NS) has been associated with age-related diseases such as cancer or neurodegeneration. To investigate how NS triggers toxicity, we used (PR)n arginine-rich peptides present in some neurodegenerative diseases as inducers of this perturbation. We here reveal that whereas (PR)n expression leads to a decrease in translation, this occurs concomitant with an accumulation of free ribosomal (r) proteins. Conversely, (PR)n-resistant cells have lower rates of r-protein synthesis, and targeting ribosome biogenesis by mTOR inhibition or MYC depletion alleviates (PR)n toxicity in vitro. In mice, systemic expression of (PR)97 drives widespread NS and accelerated aging, which is alleviated by rapamycin. Notably, the generalized accumulation of orphan r-proteins is a common outcome of chemical or genetic perturbations that induce NS. Together, our study presents a general model to explain how NS induces cellular toxicity and provides in vivo evidence supporting a role for NS as a driver of aging in mammals.


Subject(s)
Neoplasms , Ribosomes , Mice , Animals , Ribosomes/metabolism , Aging/genetics , Peptides/metabolism , Sirolimus/pharmacology , Neoplasms/metabolism , Cell Nucleolus/genetics , Mammals
2.
Cell ; 155(5): 979-80, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24267882

ABSTRACT

Stalled replication forks occasionally collapse, leading to potentially catastrophic DNA double-strand breaks. Now, Toledo et al. (2013) reveal that fork breakage occurs when the pool of the single-strand DNA-binding protein RPA becomes exhausted. This study has important implications for the origin and treatment of cancers with high levels of replicative stress.


Subject(s)
DNA Replication , Genomic Instability , Replication Protein A/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Humans
3.
Cell ; 152(3): 620-32, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23352430

ABSTRACT

DNA double-strand breaks (DSBs) in B lymphocytes arise stochastically during replication or as a result of targeted DNA damage by activation-induced cytidine deaminase (AID). Here we identify recurrent, early replicating, and AID-independent DNA lesions, termed early replication fragile sites (ERFSs), by genome-wide localization of DNA repair proteins in B cells subjected to replication stress. ERFSs colocalize with highly expressed gene clusters and are enriched for repetitive elements and CpG dinucleotides. Although distinct from late-replicating common fragile sites (CFS), the stability of ERFSs and CFSs is similarly dependent on the replication-stress response kinase ATR. ERFSs break spontaneously during replication, but their fragility is increased by hydroxyurea, ATR inhibition, or deregulated c-Myc expression. Moreover, greater than 50% of recurrent amplifications/deletions in human diffuse large B cell lymphoma map to ERFSs. In summary, we have identified a source of spontaneous DNA lesions that drives instability at preferred genomic sites.


Subject(s)
Chromosome Fragile Sites , DNA Replication , Eukaryota/genetics , Genomic Instability , Prokaryotic Cells/physiology , Animals , Biomechanical Phenomena , DNA Repair , Humans
4.
Cell ; 153(6): 1266-80, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-23727112

ABSTRACT

The DNA damage response (DDR) protein 53BP1 protects DNA ends from excessive resection in G1, and thereby favors repair by nonhomologous end-joining (NHEJ) as opposed to homologous recombination (HR). During S phase, BRCA1 antagonizes 53BP1 to promote HR. The pro-NHEJ and antirecombinase functions of 53BP1 are mediated in part by RIF1, the only known factor that requires 53BP1 phosphorylation for its recruitment to double-strand breaks (DSBs). Here, we show that a 53BP1 phosphomutant, 53BP18A, comprising alanine substitutions of the eight most N-terminal S/TQ phosphorylation sites, mimics 53BP1 deficiency by restoring genome stability in BRCA1-deficient cells yet behaves like wild-type 53BP1 with respect to immunoglobulin class switch recombination (CSR). 53BP18A recruits RIF1 but fails to recruit the DDR protein PTIP to DSBs, and disruption of PTIP phenocopies 53BP18A. We conclude that 53BP1 promotes productive CSR and suppresses mutagenic DNA repair through distinct phosphodependent interactions with RIF1 and PTIP.


Subject(s)
Carrier Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA End-Joining Repair , DNA-Binding Proteins/metabolism , Immunoglobulin Class Switching , Nuclear Proteins/metabolism , Telomere-Binding Proteins/metabolism , Animals , B-Lymphocytes/metabolism , BRCA1 Protein/metabolism , Chromosomal Proteins, Non-Histone/genetics , DNA Breaks, Double-Stranded , DNA-Binding Proteins/genetics , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Fibroblasts/metabolism , Genomic Instability , Mice , Mutation , Tumor Suppressor p53-Binding Protein 1
5.
Trends Biochem Sci ; 48(3): 274-287, 2023 03.
Article in English | MEDLINE | ID: mdl-36229381

ABSTRACT

The nucleolus is the site of ribosome biogenesis, one of the most resource-intensive processes in eukaryotic cells. Accordingly, nucleolar morphology and activity are highly responsive to growth signaling and nucleolar insults which are collectively included in the actively evolving concept of nucleolar stress. Importantly, nucleolar alterations are a prominent feature of multiple human pathologies, including cancer and neurodegeneration, as well as being associated with aging. The past decades have seen numerous attempts to isolate compounds targeting different facets of nucleolar activity. We provide an overview of therapeutic opportunities for targeting nucleoli in different pathologies and currently available therapies.


Subject(s)
Neoplasms , Ribosomes , Humans , Cell Nucleolus/pathology , Neoplasms/drug therapy , Neoplasms/pathology , Aging
6.
Genes Dev ; 32(7-8): 568-576, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29650524

ABSTRACT

MEK inhibition in combination with a glycogen synthase kinase-3ß (GSK3ß) inhibitor, referred as the 2i condition, favors pluripotency in embryonic stem cells (ESCs). However, the mechanisms by which the 2i condition limits ESC differentiation and whether RAS proteins are involved in this phenomenon remain poorly understood. Here we show that RAS nullyzygosity reduces the growth of mouse ESCs (mESCs) and prohibits their differentiation. Upon RAS deficiency or MEK inhibition, ERF (E twenty-six 2 [Ets2]-repressive factor), a transcriptional repressor from the ETS domain family, translocates to the nucleus, where it binds to the enhancers of pluripotency factors and key RAS targets. Remarkably, deletion of Erf rescues the proliferative defects of RAS-devoid mESCs and restores their capacity to differentiate. Furthermore, we show that Erf loss enables the development of RAS nullyzygous teratomas. In summary, this work reveals an essential role for RAS proteins in pluripotency and identifies ERF as a key mediator of the response to RAS/MEK/ERK inhibition in mESCs.


Subject(s)
Embryonic Stem Cells/cytology , Genes, ras , Repressor Proteins/physiology , Animals , Cell Differentiation , Cell Line , Embryonic Stem Cells/metabolism , Enhancer Elements, Genetic , Gene Deletion , Mice , Mice, Nude , Repressor Proteins/genetics , Repressor Proteins/metabolism , Teratoma/genetics
7.
EMBO J ; 40(11): e99692, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33856059

ABSTRACT

Chemical inhibitors of the deubiquitinase USP7 are currently being developed as anticancer agents based on their capacity to stabilize P53. Regardless of this activity, USP7 inhibitors also generate DNA damage in a p53-independent manner. However, the mechanism of this genotoxicity and its contribution to the anticancer effects of USP7 inhibitors are still under debate. Here we show that, surprisingly, even if USP7 inhibitors stop DNA replication, they also induce a widespread activation of CDK1 throughout the cell cycle, which leads to DNA damage and is toxic for mammalian cells. In addition, USP7 interacts with the phosphatase PP2A and supports its active localization in the cytoplasm. Accordingly, inhibition of USP7 or PP2A triggers very similar changes of the phosphoproteome, including a widespread increase in the phosphorylation of CDK1 targets. Importantly, the toxicity of USP7 inhibitors is alleviated by lowering CDK1 activity or by chemical activation of PP2A. Our work reveals that USP7 limits CDK1 activity at all cell cycle stages, providing a novel mechanism that explains the toxicity of USP7 inhibitors through untimely activation of CDK1.


Subject(s)
CDC2 Protein Kinase/metabolism , Cell Cycle , Ubiquitin-Specific Peptidase 7/metabolism , Animals , Cells, Cultured , DNA Damage , HCT116 Cells , Humans , Mice , NIH 3T3 Cells , Protease Inhibitors/toxicity , Protein Phosphatase 2/metabolism , Protein Transport , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors
8.
EMBO J ; 40(13): e103311, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33978236

ABSTRACT

Due to their capability to transport chemicals or proteins into target cells, cell-penetrating peptides (CPPs) are being developed as therapy delivery tools. However, and despite their interesting properties, arginine-rich CPPs often show toxicity for reasons that remain poorly understood. Using a (PR)n dipeptide repeat that has been linked to amyotrophic lateral sclerosis (ALS) as a model of an arginine-rich CPP, we here show that the presence of (PR)n leads to a generalized displacement of RNA- and DNA-binding proteins from chromatin and mRNA. Accordingly, any reaction involving nucleic acids, such as RNA transcription, translation, splicing and degradation, or DNA replication and repair, is impaired by the presence of the CPPs. Interestingly, the effects of (PR)n are fully mimicked by protamine, a small arginine-rich protein that displaces histones from chromatin during spermatogenesis. We propose that widespread coating of nucleic acids and consequent displacement of RNA- and DNA-binding factors from chromatin and mRNA accounts for the toxicity of arginine-rich CPPs, including those that have been recently associated with the onset of ALS.


Subject(s)
Arginine/genetics , Cell-Penetrating Peptides/genetics , DNA-Binding Proteins/genetics , RNA-Binding Proteins/genetics , Amyotrophic Lateral Sclerosis/genetics , Cell Line, Tumor , Chromatin/genetics , DNA/genetics , HeLa Cells , Histones/genetics , Humans , Nucleic Acids/genetics , RNA/genetics , RNA Splicing/genetics , RNA, Messenger/genetics , Spermatogenesis/genetics
9.
Cell ; 141(2): 243-54, 2010 Apr 16.
Article in English | MEDLINE | ID: mdl-20362325

ABSTRACT

Defective DNA repair by homologous recombination (HR) is thought to be a major contributor to tumorigenesis in individuals carrying Brca1 mutations. Here, we show that DNA breaks in Brca1-deficient cells are aberrantly joined into complex chromosome rearrangements by a process dependent on the nonhomologous end-joining (NHEJ) factors 53BP1 and DNA ligase 4. Loss of 53BP1 alleviates hypersensitivity of Brca1 mutant cells to PARP inhibition and restores error-free repair by HR. Mechanistically, 53BP1 deletion promotes ATM-dependent processing of broken DNA ends to produce recombinogenic single-stranded DNA competent for HR. In contrast, Lig4 deficiency does not rescue the HR defect in Brca1 mutant cells but prevents the joining of chromatid breaks into chromosome rearrangements. Our results illustrate that HR and NHEJ compete to process DNA breaks that arise during DNA replication and that shifting the balance between these pathways can be exploited to selectively protect or kill cells harboring Brca1 mutations.


Subject(s)
BRCA1 Protein/genetics , DNA Repair , Intracellular Signaling Peptides and Proteins/metabolism , Animals , B-Lymphocytes/metabolism , Chromosomal Proteins, Non-Histone , DNA Breaks , DNA-Binding Proteins , Female , Genomic Instability , Humans , Mice , Tumor Suppressor p53-Binding Protein 1
10.
Mol Ther ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956870

ABSTRACT

Several viruses hijack various forms of endocytosis in order to infect host cells. Here, we report the discovery of a molecule with antiviral properties that we named virapinib, which limits viral entry by macropinocytosis. The identification of virapinib derives from a chemical screen using high-throughput microscopy, where we identified chemical entities capable of preventing infection with a pseudotype virus expressing the spike (S) protein from SARS-CoV-2. Subsequent experiments confirmed the capacity of virapinib to inhibit infection by SARS-CoV-2, as well as by additional viruses, such as mpox virus and TBEV. Mechanistic analyses revealed that the compound inhibited macropinocytosis, limiting this entry route for the viruses. Importantly, virapinib has no significant toxicity to host cells. In summary, we present the discovery of a molecule that inhibits macropinocytosis, thereby limiting the infectivity of viruses that use this entry route such as SARS-CoV2.

11.
Blood ; 139(2): 228-239, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34359075

ABSTRACT

Dysregulation of the c-Myc oncogene occurs in a wide variety of hematologic malignancies, and its overexpression has been linked with aggressive tumor progression. Here, we show that poly (ADP-ribose) polymerase 1 (PARP-1) and PARP-2 exert opposing influences on progression of c-Myc-driven B-cell lymphoma. PARP-1 and PARP-2 catalyze the synthesis and transfer of ADP-ribose units onto amino acid residues of acceptor proteins in response to DNA strand breaks, playing a central role in the response to DNA damage. Accordingly, PARP inhibitors have emerged as promising new cancer therapeutics. However, the inhibitors currently available for clinical use are not able to discriminate between individual PARP proteins. We found that genetic deletion of PARP-2 prevents c-Myc-driven B-cell lymphoma, whereas PARP-1 deficiency accelerates lymphomagenesis in the Eµ-Myc mouse model of aggressive B-cell lymphoma. Loss of PARP-2 aggravates replication stress in preleukemic Eµ-Myc B cells, resulting in accumulation of DNA damage and concomitant cell death that restricts the c-Myc-driven expansion of B cells, thereby providing protection against B-cell lymphoma. In contrast, PARP-1 deficiency induces a proinflammatory response and an increase in regulatory T cells, likely contributing to immune escape of B-cell lymphoma, resulting in an acceleration of lymphomagenesis. These findings pinpoint specific functions for PARP-1 and PARP-2 in c-Myc-driven lymphomagenesis with antagonistic consequences that may help inform the design of new PARP-centered therapeutic strategies, with selective PARP-2 inhibition potentially representing a new therapeutic approach for the treatment of c-Myc-driven tumors.


Subject(s)
Lymphoma, B-Cell/genetics , Poly (ADP-Ribose) Polymerase-1/genetics , Poly(ADP-ribose) Polymerases/genetics , Proto-Oncogene Proteins c-myc/genetics , Animals , Carcinogenesis/genetics , DNA Damage , Gene Deletion , Gene Expression Regulation, Neoplastic , Mice , Mice, Knockout
12.
PLoS Biol ; 19(5): e3001263, 2021 05.
Article in English | MEDLINE | ID: mdl-34033645

ABSTRACT

We here conducted an image-based chemical screen to evaluate how medically approved drugs, as well as drugs that are currently under development, influence overall translation levels. None of the compounds up-regulated translation, which could be due to the screen being performed in cancer cells grown in full media where translation is already present at very high levels. Regarding translation down-regulators, and consistent with current knowledge, inhibitors of the mechanistic target of rapamycin (mTOR) signaling pathway were the most represented class. In addition, we identified that inhibitors of sphingosine kinases (SPHKs) also reduce mRNA translation levels independently of mTOR. Mechanistically, this is explained by an effect of the compounds on the membranes of the endoplasmic reticulum (ER), which activates the integrated stress response (ISR) and contributes to the toxicity of SPHK inhibitors. Surprisingly, the toxicity and activation of the ISR triggered by 2 independent SPHK inhibitors, SKI-II and ABC294640, the latter in clinical trials, are also observed in cells lacking SPHK1 and SPHK2. In summary, our study provides a useful resource on the effects of medically used drugs on translation, identified compounds capable of reducing translation independently of mTOR and has revealed that the cytotoxic properties of SPHK inhibitors being developed as anticancer agents are independent of SPHKs.


Subject(s)
Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Protein Biosynthesis/physiology , Animals , Cell Line , Drug Design , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays/methods , Humans , Image Processing, Computer-Assisted/methods , Lysophospholipids/metabolism , Mass Spectrometry/methods , Molecular Structure , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Biosynthesis/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Small Molecule Libraries , Sphingosine/metabolism
14.
Mol Cell ; 62(2): 307-313, 2016 04 21.
Article in English | MEDLINE | ID: mdl-27067599

ABSTRACT

One recurring theme in drug development is to exploit synthetic lethal properties as means to preferentially damage the DNA of cancer cells. We and others have previously developed inhibitors of the ATR kinase, shown to be particularly genotoxic for cells expressing certain oncogenes. In contrast, the mechanisms of resistance to ATR inhibitors remain unexplored. We report here on a genome-wide CRISPR-Cas9 screen that identified CDC25A as a major determinant of sensitivity to ATR inhibition. CDC25A-deficient cells resist high doses of ATR inhibitors, which we show is due to their failure to prematurely enter mitosis in response to the drugs. Forcing mitotic entry with WEE1 inhibitors restores the toxicity of ATR inhibitors in CDC25A-deficient cells. With ATR inhibitors now entering the clinic, our work provides a better understanding of the mechanisms by which these compounds kill cells and reveals genetic interactions that could be used for their rational use.


Subject(s)
Antineoplastic Agents/pharmacology , CRISPR-Cas Systems , Drug Resistance, Neoplasm/genetics , Embryonic Stem Cells/drug effects , Protein Kinase Inhibitors/pharmacology , cdc25 Phosphatases/metabolism , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Line , Dose-Response Relationship, Drug , Embryonic Stem Cells/enzymology , Embryonic Stem Cells/pathology , Genome-Wide Association Study , Humans , Mitosis/drug effects , Molecular Targeted Therapy , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , RNA Interference , Signal Transduction/drug effects , Transfection , cdc25 Phosphatases/genetics
15.
Mol Cell ; 63(5): 877-83, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27524497

ABSTRACT

The Pold3 gene encodes a subunit of the Polδ DNA polymerase complex. Pold3 orthologs are not essential in Saccharomyces cerevisiae or chicken DT40 cells, but the Schizosaccharomyces pombe ortholog is essential. POLD3 also has a specialized role in the repair of broken replication forks, suggesting that POLD3 activity could be particularly relevant for cancer cells enduring high levels of DNA replication stress. We report here that POLD3 is essential for mouse development and is also required for viability in adult animals. Strikingly, even Pold3(+/-) mice were born at sub-Mendelian ratios, and, of those born, some presented hydrocephaly and had a reduced lifespan. In cells, POLD3 deficiency led to replication stress and cell death, which were aggravated by the expression of activated oncogenes. Finally, we show that Pold3 deletion destabilizes all members of the Polδ complex, explaining its major role in DNA replication and the severe impact of its deficiency.


Subject(s)
DNA Polymerase III/deficiency , DNA Replication , Haploinsufficiency , Hydrocephalus/genetics , Longevity/genetics , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Brain/growth & development , Brain/metabolism , Brain/pathology , Cell Death , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/metabolism , DNA Damage , DNA Polymerase III/genetics , Gene Expression Regulation, Developmental , Histones/genetics , Histones/metabolism , Homozygote , Hydrocephalus/metabolism , Hydrocephalus/mortality , Hydrocephalus/pathology , Lung/growth & development , Lung/metabolism , Lung/pathology , Mice , Mice, Knockout , Phosphorylation , Survival Analysis
16.
Nano Lett ; 23(9): 3701-3707, 2023 05 10.
Article in English | MEDLINE | ID: mdl-36892970

ABSTRACT

Speed is key during infectious disease outbreaks. It is essential, for example, to identify critical host binding factors to pathogens as fast as possible. The complexity of host plasma membrane is often a limiting factor hindering fast and accurate determination of host binding factors as well as high-throughput screening for neutralizing antimicrobial drug targets. Here, we describe a multiparametric and high-throughput platform tackling this bottleneck and enabling fast screens for host binding factors as well as new antiviral drug targets. The sensitivity and robustness of our platform were validated by blocking SARS-CoV-2 particles with nanobodies and IgGs from human serum samples.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Virus Attachment , High-Throughput Screening Assays , Protein Binding
17.
Genes Dev ; 29(7): 690-5, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25838540

ABSTRACT

In Saccharomyces cerevisiae, absence of the checkpoint kinase Mec1 (ATR) is viable upon mutations that increase the activity of the ribonucleotide reductase (RNR) complex. Whether this pathway is conserved in mammals remains unknown. Here we show that cells from mice carrying extra alleles of the RNR regulatory subunit RRM2 (Rrm2(TG)) present supraphysiological RNR activity and reduced chromosomal breakage at fragile sites. Moreover, increased Rrm2 gene dosage significantly extends the life span of ATR mutant mice. Our study reveals the first genetic condition in mammals that reduces fragile site expression and alleviates the severity of a progeroid disease by increasing RNR activity.


Subject(s)
Chromosome Breakage , Chromosome Fragile Sites/genetics , Gene Dosage/genetics , Longevity/genetics , Protein Serine-Threonine Kinases/genetics , Ribonucleoside Diphosphate Reductase/genetics , Animals , Cell Line , Cell Survival , Cells, Cultured , Enzyme Activation/genetics , Fibroblasts/cytology , Humans , Mice , Nucleosides/metabolism , Survival Analysis
18.
Nature ; 535(7612): 382-7, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27443740

ABSTRACT

Cells deficient in the Brca1 and Brca2 genes have reduced capacity to repair DNA double-strand breaks by homologous recombination and consequently are hypersensitive to DNA-damaging agents, including cisplatin and poly(ADP-ribose) polymerase (PARP) inhibitors. Here we show that loss of the MLL3/4 complex protein, PTIP, protects Brca1/2-deficient cells from DNA damage and rescues the lethality of Brca2-deficient embryonic stem cells. However, PTIP deficiency does not restore homologous recombination activity at double-strand breaks. Instead, its absence inhibits the recruitment of the MRE11 nuclease to stalled replication forks, which in turn protects nascent DNA strands from extensive degradation. More generally, acquisition of PARP inhibitors and cisplatin resistance is associated with replication fork protection in Brca2-deficient tumour cells that do not develop Brca2 reversion mutations. Disruption of multiple proteins, including PARP1 and CHD4, leads to the same end point of replication fork protection, highlighting the complexities by which tumour cells evade chemotherapeutic interventions and acquire drug resistance.


Subject(s)
DNA Replication/physiology , Drug Resistance, Neoplasm/drug effects , Gene Deletion , Genes, BRCA1 , Genes, BRCA2 , Neoplasms/pathology , Nuclear Proteins/deficiency , Animals , Carrier Proteins/genetics , Cell Line, Tumor , Cisplatin/pharmacology , DNA/biosynthesis , DNA/metabolism , DNA Breaks, Double-Stranded , DNA Damage/drug effects , DNA Damage/genetics , DNA Helicases/genetics , DNA Repair/drug effects , DNA Repair/genetics , DNA Repair Enzymes/antagonists & inhibitors , DNA Repair Enzymes/metabolism , DNA Replication/drug effects , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm/genetics , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Female , Homologous Recombination , MRE11 Homologue Protein , Mice , Neoplasms/genetics , Nuclear Proteins/genetics , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/genetics
19.
Mol Cell ; 55(6): 803-804, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25238193

ABSTRACT

Fanconi anemia is characterized by a higher sensitivity to DNA crosslinking agents, including aldehydes. In this issue of Molecular Cell, Oberbeck et al. (2014) reveal that detoxification of aldehydes by pregnant mothers contributes to limit the severity of the disease.


Subject(s)
Acetaldehyde/metabolism , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Embryo, Mammalian/metabolism , Ethanol/toxicity , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia/pathology , Aldehyde Dehydrogenase, Mitochondrial , Animals , Female , Humans , Pregnancy
20.
EMBO Rep ; 20(1)2019 01.
Article in English | MEDLINE | ID: mdl-30538118

ABSTRACT

The G2/M checkpoint coordinates DNA replication with mitosis and thereby prevents chromosome segregation in the presence of unreplicated or damaged DNA Here, we show that the RNA-binding protein TIAR is essential for the G2/M checkpoint and that TIAR accumulates in nuclear foci in late G2 and prophase in cells suffering from replication stress. These foci, which we named G2/M transition granules (GMGs), occur at low levels in normally cycling cells and are strongly induced by replication stress. In addition to replication stress response proteins, GMGs contain factors involved in RNA metabolism as well as CDK1. Depletion of TIAR accelerates mitotic entry and leads to chromosomal instability in response to replication stress, in a manner that can be alleviated by the concomitant depletion of Cdc25B or inhibition of CDK1. Since TIAR retains CDK1 in GMGs and attenuates CDK1 activity, we propose that the assembly of GMGs may represent a so far unrecognized mechanism that contributes to the activation of the G2/M checkpoint in mammalian cells.


Subject(s)
CDC2 Protein Kinase/genetics , G2 Phase Cell Cycle Checkpoints/genetics , RNA-Binding Proteins/genetics , cdc25 Phosphatases/genetics , Cell Cycle/genetics , Chromosome Segregation/genetics , DNA Damage/genetics , DNA Replication/genetics , HeLa Cells , Humans , Mitosis/genetics , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL