Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
J Infect Dis ; 223(2): 319-325, 2021 02 03.
Article in English | MEDLINE | ID: mdl-32697310

ABSTRACT

BACKGROUND: Inhalational anthrax is rare and clinical experience limited. Expert guidelines recommend treatment with combination antibiotics including protein synthesis-inhibitors to decrease toxin production and increase survival, although evidence is lacking. METHODS: Rhesus macaques exposed to an aerosol of Bacillus anthracis spores were treated with ciprofloxacin, clindamycin, or ciprofloxacin + clindamycin after becoming bacteremic. Circulating anthrax lethal factor and protective antigen were quantitated pretreatment and 1.5 and 12 hours after beginning antibiotics. RESULTS: In the clindamycin group, 8 of 11 (73%) survived demonstrating its efficacy for the first time in inhalational anthrax, compared to 9 of 9 (100%) with ciprofloxacin, and 8 of 11 (73%) with ciprofloxacin + clindamycin. These differences were not statistically significant. There were no significant differences between groups in lethal factor or protective antigen levels from pretreatment to 12 hours after starting antibiotics. Animals that died after clindamycin had a greater incidence of meningitis compared to those given ciprofloxacin or ciprofloxacin + clindamycin, but numbers of animals were very low and no definitive conclusion could be reached. CONCLUSION: Treatment of inhalational anthrax with clindamycin was as effective as ciprofloxacin in the nonhuman primate. Addition of clindamycin to ciprofloxacin did not enhance reduction of circulating toxin levels.


Subject(s)
Anthrax/blood , Anthrax/prevention & control , Antigens, Bacterial/blood , Bacillus anthracis/drug effects , Bacillus anthracis/physiology , Bacterial Toxins/blood , Ciprofloxacin/therapeutic use , Clindamycin/therapeutic use , Respiratory Tract Infections/blood , Respiratory Tract Infections/prevention & control , Animals , Anthrax/microbiology , Anthrax/mortality , Anti-Bacterial Agents/therapeutic use , Biomarkers , Ciprofloxacin/pharmacology , Clindamycin/pharmacology , Disease Models, Animal , Drug Therapy, Combination , Macaca mulatta , Prognosis , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/mortality , Treatment Outcome
2.
Microb Pathog ; 155: 104919, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33915206

ABSTRACT

Burkholderia mallei is a gram-negative obligate animal pathogen that causes glanders, a highly contagious and potentially fatal disease of solipeds including horses, mules, and donkeys. Humans are also susceptible, and exposure can result in a wide range of clinical forms, i.e., subclinical infection, chronic forms with remission and exacerbation, or acute and potentially lethal septicemia and/or pneumonia. Due to intrinsic antibiotic resistance and the ability of the organisms to survive intracellularly, current treatment regimens are protracted and complicated; and no vaccine is available. As a consequence of these issues, and since B. mallei is infectious by the aerosol route, B. mallei is regarded as a major potential biothreat agent. To develop optimal medical countermeasures and diagnostic tests, well characterized animal models of human glanders are needed. The goal of this study was to perform a head-to-head comparison of models employing three commonly used nonhuman primate (NHP) species, the African green monkey (AGM), Rhesus macaque, and the Cynomolgus macaque. The natural history of infection and in vitro clinical, histopathological, immunochemical, and bacteriological parameters were examined. The AGMs were the most susceptible NHP to B. mallei; five of six expired within 14 days. Although none of the Rhesus or Cynomolgus macaques succumbed, the Rhesus monkeys exhibited abnormal signs and clinical findings associated with B. mallei infection; and the latter may be useful for modeling chronic B. mallei infection. Based on the disease progression observations, gross and histochemical pathology, and humoral and cellular immune response findings, the AGM appears to be the optimal model of acute, lethal glanders infection. AGM models of infection by B. pseudomallei, the etiologic agent of melioidosis, have been characterized recently. Thus, the selection of the AGM species provides the research community with a single NHP model for investigations on acute, severe, inhalational melioidosis and glanders.


Subject(s)
Burkholderia mallei , Burkholderia pseudomallei , Glanders , Melioidosis , Aerosols , Animals , Chlorocebus aethiops , Disease Models, Animal , Glanders/diagnosis , Horses , Macaca mulatta
3.
BMC Immunol ; 21(1): 5, 2020 02 03.
Article in English | MEDLINE | ID: mdl-32013893

ABSTRACT

BACKGROUND: Melioidosis is endemic in Southeast Asia and Northern Australia and is caused by the Gram-negative, facultative intracellular pathogen Burkholderia pseudomallei. Diagnosis of melioidosis is often difficult because of the protean clinical presentation of the disease, and it may mimic other diseases, such as tuberculosis. There are many different strains of B. pseudomallei that have been isolated from patients with melioidosis, but it was not clear if they could cause a similar disease in a chronic BALB/c murine model of melioidosis. Hence, we wanted to examine chronically infected mice exposed to different strains of B. pseudomallei to determine if there were differences in the host immune response to the pathogen. RESULTS: We identified common host immune responses exhibited in chronically infected BALB/c mice, although there was some heterogeneity in the host response in chronically infected mice after exposure to different strains of B. pseudomallei. They all displayed pyogranulomatous lesions in their spleens with a large influx of monocytes/macrophages, NK cells, and neutrophils identified by flow cytometry. Sera from chronically infected mice by ELISA exhibited elevated IgG titers to the pathogen, and we detected by Luminex micro-bead array technology a significant increase in the expression of inflammatory cytokines/chemokines, such as IFN-γ, IL-1α, IL-1ß, KC, and MIG. By immunohistochemical and in situ RNA hybridization analysis we found that the increased expression of proinflammatory cytokines (IL-1α, IL-1ß, TNF-α, IFN-γ) was confined primarily to the area with the pathogen within pyogranulomatous lesions. We also found that cultured splenocytes from chronically infected mice could express IFN-γ, TNF-α, and MIP-1α ex vivo without the need for additional exogenous stimulation. In addition by flow cytometry, we detected significant amounts of intracellular expression of TNF-α and IFN-γ without a protein transport blocker in monocytes/macrophages, NK cells, and neutrophils but not in CD4+ or CD8+ T cells in splenocytes from chronically infected mice. CONCLUSION: Taken together the common features we have identified in chronically infected mice when 10 different human clinical strains of B. pseudomallei were examined could serve as biomarkers when evaluating potential therapeutic agents in mice for the treatment of chronic melioidosis in humans.


Subject(s)
Burkholderia pseudomallei/physiology , Interferon-gamma/metabolism , Melioidosis/immunology , Spleen/pathology , Tumor Necrosis Factor-alpha/metabolism , Animals , Chronic Disease , Disease Models, Animal , Humans , Immunity, Cellular , Mice , Mice, Inbred BALB C
4.
Appl Environ Microbiol ; 84(12)2018 06 15.
Article in English | MEDLINE | ID: mdl-29654186

ABSTRACT

In 2015, a laboratory of the United States Department of Defense (DoD) inadvertently shipped preparations of gamma-irradiated spores of Bacillus anthracis that contained live spores. In response, a systematic evidence-based method for preparing, concentrating, irradiating, and verifying the inactivation of spore materials was developed. We demonstrate the consistency of spore preparations across multiple biological replicates and show that two different DoD institutions independently obtained comparable dose-inactivation curves for a monodisperse suspension of B. anthracis spores containing 3 × 1010 CFU. Spore preparations from three different institutions and three strain backgrounds yielded similar decimal reduction (D10) values and irradiation doses required to ensure sterility (DSAL) to the point at which the probability of detecting a viable spore is 10-6 Furthermore, spores of a genetically tagged strain of B. anthracis strain Sterne were used to show that high densities of dead spores suppress the recovery of viable spores. Together, we present an integrated method for preparing, irradiating, and verifying the inactivation of spores of B. anthracis for use as standard reagents for testing and evaluating detection and diagnostic devices and techniques.IMPORTANCE The inadvertent shipment by a U.S. Department of Defense (DoD) laboratory of live Bacillus anthracis (anthrax) spores to U.S. and international destinations revealed the need to standardize inactivation methods for materials derived from biological select agents and toxins (BSAT) and for the development of evidence-based methods to prevent the recurrence of such an event. Following a retrospective analysis of the procedures previously employed to generate inactivated B. anthracis spores, a study was commissioned by the DoD to provide data required to support the production of inactivated spores for the biodefense community. The results of this work are presented in this publication, which details the method by which spores can be prepared, irradiated, and tested, such that the chance of finding residual living spores in any given preparation is 1/1,000,000. These irradiated spores are used to test equipment and methods for the detection of agents of biological warfare and bioterrorism.


Subject(s)
Bacillus anthracis/radiation effects , Gamma Rays , Microbial Viability/radiation effects , Spores, Bacterial/radiation effects , Sterilization/methods , Bacillus anthracis/physiology , Microbiological Techniques/methods , Retrospective Studies , Spores, Bacterial/physiology
5.
Virol J ; 13(1): 163, 2016 10 03.
Article in English | MEDLINE | ID: mdl-27716429

ABSTRACT

BACKGROUND: Sub-Saharan Africa is home to a variety of pathogens, but disease surveillance and the healthcare infrastructure necessary for proper management and control are severely limited. Lassa virus, the cause of Lassa fever, a severe hemorrhagic fever in humans is endemic in West Africa. In Sierra Leone at the Kenema Government Hospital Lassa Diagnostic Laboratory, up to 70 % of acute patient samples suspected of Lassa fever test negative for Lassa virus infection. This large amount of acute undiagnosed febrile illness can be attributed in part to an array of hemorrhagic fever and arthropod-borne viruses causing disease that goes undetected and untreated. METHODS: To better define the nature and extent of viral pathogens infecting the Sierra Leonean population, we developed a multiplexed MAGPIX® assay to detect IgG antibodies against Lassa, Ebola, Marburg, Rift Valley fever, and Crimean-Congo hemorrhagic fever viruses as well as pan-assays for flaviviruses and alphaviruses. This assay was used to survey 675 human serum samples submitted to the Lassa Diagnostic Laboratory between 2007 and 2014. RESULTS: In the study population, 50.2 % were positive for Lassa virus, 5.2 % for Ebola virus, 10.7 % for Marburg virus, 1.8 % for Rift Valley fever virus, 2.0 % for Crimean-Congo hemorrhagic fever virus, 52.9 % for flaviviruses and 55.8 % for alphaviruses. CONCLUSIONS: These data exemplify the importance of disease surveillance and differential diagnosis for viral diseases in Sierra Leone. We demonstrate the endemic nature of some of these viral pathogens in the region and suggest that unrecognized outbreaks of viral infection have occurred.


Subject(s)
Antibodies, Viral/blood , Virus Diseases/epidemiology , Disease Outbreaks , Endemic Diseases , Epidemiological Monitoring , Humans , Immunoassay/methods , Seroepidemiologic Studies , Sierra Leone/epidemiology , Virus Diseases/virology
6.
Microb Pathog ; 86: 53-63, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26162294

ABSTRACT

Burkholderia pseudomallei is the etiologic agent of melioidosis, which is endemic in Southeast Asia and Northern Australia. We previously found by the intraperitoneal (IP) route that we could discern differences in virulence in mice amongst different strains of B. pseudomallei. We report an early immune response study comparing two strains in our collection which represent the least, B. pseudomallei 1106a, and one of the most, HBPUB10134a, virulent strains in BALB/c mice. B. pseudomallei HBPUB10134a infected mouse spleens contained a 2-3 log higher bacterial burden than mice infected with B. pseudomallei 1106a 3 days post-infection (PI). More and higher amounts of inflammatory cytokines/chemokines were detected in sera and spleen extracts from B. pseudomallei HBPUB10134a than B. pseudomallei 1106a infected mice. The most prominent were IFNγ, IL-1α, IL-1ß, IL-6, IL-10, IP-10, and MIG. After 7 days PI, there was a decrease in bacterial burden in spleens from 1106a infected mice and a decrease in cytokines/chemokines in sera and spleen extracts from both sets of mice. By day 14 PI we saw an increase in monocytes/macrophages, NK cells, and granulocytes in spleens from both sets of mice. No B. pseudomallei HBPUB10134a infected mice survived after this time. In summary, B. pseudomallei HBPUB10134a was more virulent and induced host innate immune responses typical of a more acute-type infection than did B. pseudomallei 1106a which produced a more chronic infection in mice.


Subject(s)
Burkholderia pseudomallei/immunology , Melioidosis/immunology , Melioidosis/pathology , Animals , Asia, Southeastern , Australia , Bacterial Load , Burkholderia pseudomallei/growth & development , Chronic Disease , Cytokines/analysis , Cytokines/blood , Disease Models, Animal , Female , Humans , Leukocytes, Mononuclear/immunology , Mice, Inbred BALB C , Serum/chemistry , Spleen/microbiology , Spleen/pathology , Virulence , Young Adult
7.
Microorganisms ; 11(7)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37512916

ABSTRACT

One pathogen that commonly causes gastrointestinal illnesses from the consumption of contaminated food is Escherichia coli O157:H7. In 2011 in Germany, however, there was a prominent outbreak of bloody diarrhea with a high incidence of hemolytic uremic syndrome (HUS) caused by an atypical, more virulent E. coli O104:H4 strain. To facilitate the identification of this lesser-known, atypical E. coli O104:H4 strain, we wanted to identify phenotypic differences between it and a strain of O157:H7 in different media and culture conditions. We found that E. coli O104:H4 strains produced considerably more biofilm than the strain of O157:H7 at 37 °C (p = 0.0470-0.0182) Biofilm production was significantly enhanced by the presence of 5% CO2 (p = 0.0348-0.0320). In our study on the innate immune response to the E. coli strains, we used HEK293 cells that express Toll-like receptors (TLRs) 2 or 4. We found that E. coli O104:H4 strains had the ability to grow in a novel HEK293 cell culture medium, while the E. coli O157:H7 strain could not. Thus, we uncovered previously unknown phenotypic properties of E. coli O104:H4 to further differentiate this pathogen from E. coli O157:H7.

8.
Hum Vaccin Immunother ; 19(2): 2216085, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37289480

ABSTRACT

Yersinia pestis is a gram-negative bacterium that causes plague in animals and humans. Depending on the route of disease transmission, the bacterium can cause an acute, often fatal disease that has a narrow window for treatment with antibiotics. Additionally, antibiotic resistant strains have been identified, emphasizing the need for novel treatments. Antibody therapy is an appealing option that can direct the immune system to clear bacterial infections. Advances in biotechnology have made both engineering and producing antibodies easier and more affordable. In this study, two screening assays were optimized to evaluate the ability of antibodies to promote phagocytosis of Y. pestis by macrophages and to induce a cytokine signature in vitro that may be predictive of protection in vivo. We evaluated a panel of 21 mouse monoclonal antibodies targeting either the anti-phagocytic capsule F1 protein or the LcrV antigen, which is part of the type 3 secretion system that facilitates translocation of virulence factors into the host cell, using two functional assays. Anti-F1 and anti-LcrV monoclonal antibodies both increased bacterial uptake by macrophages, with greater uptake observed in the presence of antibodies that were protective in the mouse pneumonic plague model. In addition, the protective anti-F1 and anti-LcrV antibodies produced unique cytokine signatures that were also associated with in vivo protection. These antibody-dependent characteristics from in vitro functional assays will be useful in down-selecting efficacious novel antibodies that can be used for treatment of plague.


Subject(s)
Plague Vaccine , Plague , Yersinia pestis , Mice , Humans , Animals , Antibodies, Monoclonal/therapeutic use , Antigens, Bacterial , Antibodies, Bacterial , Cytokines , Pore Forming Cytotoxic Proteins
9.
Antibodies (Basel) ; 12(2)2023 May 08.
Article in English | MEDLINE | ID: mdl-37218899

ABSTRACT

Plague is an ancient disease that continues to be of concern to both the public health and biodefense research communities. Pneumonic plague is caused by hematogenous spread of Yersinia pestis bacteria from a ruptured bubo to the lungs or by directly inhaling aerosolized bacteria. The fatality rate associated with pneumonic plague is significant unless effective antibiotic therapy is initiated soon after an early and accurate diagnosis is made. As with all bacterial pathogens, drug resistance is a primary concern when developing strategies to combat these Yersinia pestis infections in the future. While there has been significant progress in vaccine development, no FDA-approved vaccine strategy exists; thus, other medical countermeasures are needed. Antibody treatment has been shown to be effective in animal models of plague. We produced fully human polyclonal antibodies in transchromosomic bovines vaccinated with the recombinant F1-V plague vaccine. The resulting human antibodies opsonized Y. pestis bacteria in the presence of RAW264.7 cells and afforded significant protection to BALB/c mice after exposure to aerosolized Y. pestis. These data demonstrate the utility of this technology to produce large quantities of non-immunogenic anti-plague human antibodies to prevent or possibly treat pneumonic plague in human.

10.
Hum Vaccin Immunother ; 19(3): 2277083, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37975637

ABSTRACT

Francisella tularensis is one of the several biothreat agents for which a licensed vaccine is needed. To ensure vaccine protection is achieved across a range of virulent F. tularensis strains, we assembled and characterized a panel of F. tularensis isolates to be utilized as challenge strains. A promising tularemia vaccine candidate is rLVS ΔcapB/iglABC (rLVS), in which the vector is the LVS strain with a deletion in the capB gene and which additionally expresses a fusion protein comprising immunodominant epitopes of proteins IglA, IglB, and IglC. Fischer rats were immunized subcutaneously 1-3 times at 3-week intervals with rLVS at various doses. The rats were exposed to a high dose of aerosolized Type A strain Schu S4 (FRAN244), a Type B strain (FRAN255), or a tick derived Type A strain (FRAN254) and monitored for survival. All rLVS vaccination regimens including a single dose of 107 CFU rLVS provided 100% protection against both Type A strains. Against the Type B strain, two doses of 107 CFU rLVS provided 100% protection, and a single dose of 107 CFU provided 87.5% protection. In contrast, all unvaccinated rats succumbed to aerosol challenge with all of the F. tularensis strains. A robust Th1-biased antibody response was induced in all vaccinated rats against all F. tularensis strains. These results demonstrate that rLVS ΔcapB/iglABC provides potent protection against inhalational challenge with either Type A or Type B F. tularensis strains and should be considered for further analysis as a future tularemia vaccine.


Subject(s)
Francisella tularensis , Tularemia , Rats , Animals , Mice , Francisella tularensis/genetics , Tularemia/prevention & control , Rats, Inbred F344 , Bacterial Vaccines , Vaccines, Attenuated , Mice, Inbred BALB C , Disease Models, Animal
11.
Front Microbiol ; 13: 965572, 2022.
Article in English | MEDLINE | ID: mdl-36060756

ABSTRACT

Burkholderia pseudomallei, the gram-negative bacterium that causes melioidosis, is notoriously difficult to treat with antibiotics. A significant effort has focused on identifying protective vaccine strategies to prevent melioidosis. However, when used as individual medical countermeasures both antibiotic treatments (therapeutics or post-exposure prophylaxes) and experimental vaccine strategies remain partially protective. Here we demonstrate that when used in combination, current vaccine strategies (recombinant protein subunits AhpC and/or Hcp1 plus capsular polysaccharide conjugated to CRM197 or the live attenuated vaccine strain B. pseudomallei 668 ΔilvI) and co-trimoxazole regimens can result in near uniform protection in a mouse model of melioidosis due to apparent synergy associated with distinct medical countermeasures. Our results demonstrated significant improvement when examining several suboptimal antibiotic regimens (e.g., 7-day antibiotic course started early after infection or 21-day antibiotic course with delayed initiation). Importantly, this combinatorial strategy worked similarly when either protein subunit or live attenuated vaccines were evaluated. Layered and integrated medical countermeasures will provide novel treatment options for melioidosis as well as diseases caused by other pathogens that are refractory to individual strategies, particularly in the case of engineered, emerging, or re-emerging bacterial biothreat agents.

12.
Front Microbiol ; 13: 965518, 2022.
Article in English | MEDLINE | ID: mdl-36060742

ABSTRACT

Burkholderia pseudomallei and the closely related species, Burkholderia mallei, produce similar multifaceted diseases which range from rapidly fatal to protracted and chronic, and are a major cause of mortality in endemic regions. Besides causing natural infections, both microbes are Tier 1 potential biothreat agents. Antibiotic treatment is prolonged with variable results, hence effective vaccines are urgently needed. The purpose of our studies was to compare candidate vaccines that target both melioidosis and glanders to identify the most efficacious one(s) and define residual requirements for their transition to the non-human primate aerosol model. Studies were conducted in the C57BL/6 mouse model to evaluate the humoral and cell-mediated immune response and protective efficacy of three Burkholderia vaccine candidates against lethal aerosol challenges with B. pseudomallei K96243, B. pseudomallei MSHR5855, and B. mallei FMH. The recombinant vaccines generated significant immune responses to the vaccine antigens, and the live attenuated vaccine generated a greater immune response to OPS and the whole bacterial cells. Regardless of the candidate vaccine evaluated, the protection of mice was associated with a dampened cytokine response within the lungs after exposure to aerosolized bacteria. Despite being delivered by two different platforms and generating distinct immune responses, two experimental vaccines, a capsule conjugate + Hcp1 subunit vaccine and the live B. pseudomallei 668 ΔilvI strain, provided significant protection and were down-selected for further investigation and advanced development.

13.
Front Cell Infect Microbiol ; 11: 808550, 2021.
Article in English | MEDLINE | ID: mdl-35096655

ABSTRACT

Biofilms have been established as an important lifestyle for bacteria in nature as these structured communities often enable survivability and persistence in a multitude of environments. Francisella tularensis is a facultative intracellular Gram-negative bacterium found throughout much of the northern hemisphere. However, biofilm formation remains understudied and poorly understood in F. tularensis as non-substantial biofilms are typically observed in vitro by the clinically relevant subspecies F. tularensis subsp. tularensis and F. tularensis subsp. holarctica (Type A and B, respectively). Herein, we report conditions under which robust biofilm development was observed in a stochastic, but reproducible manner in Type A and B isolates. The frequency at which biofilm was observed increased temporally and appeared switch-like as progeny from the initial biofilm quickly formed biofilm in a predictable manner regardless of time or propagation with fresh media. The Type B isolates used for this study were found to more readily switch on biofilm formation than Type A isolates. Additionally, pH was found to function as an environmental checkpoint for biofilm initiation independently of the heritable cellular switch. Multiple colony morphologies were observed in biofilm positive cultures leading to the identification of a particular subset of grey variants that constitutively produce biofilm. Further, we found that constitutive biofilm forming isolates delay the onset of a viable non-culturable state. In this study, we demonstrate that a robust biofilm can be developed by clinically relevant F. tularensis isolates, provide a mechanism for biofilm initiation and examine the potential role of biofilm formation.


Subject(s)
Francisella tularensis , Francisella , Tularemia , Biofilms , Humans , Lipopolysaccharides , Phase Variation , Tularemia/microbiology
14.
J Am Assoc Lab Anim Sci ; 60(5): 582-586, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34266520

ABSTRACT

The African clawed frog, Xenopus laevis, is a widely used model for biomedical research. X. laevis could be more useful as a model with a better method for collection and analysis of its blood and serum. However, blood collection in X. laevis can be challenging due to their small size, lack of peripheral vascular access, and species-specific hematology variables. The goal of this study was to compare cardiocentesis, the current gold standard terminal blood collection method, with a leg amputation technique. Blood samples were collected from 24 laboratory-reared X. laevis, randomized to either the cardiocentesis or leg amputation method, with 6 males and 6 females in each group. Hematology and serum biochemistry were also conducted to identify any lymph contamination in the samples. The leg amputation method produced significantly higher blood volumes in shorter times and showed no significant differences in clinical pathology parameters as compared with cardiocentesis. These results indicate that blood collection by leg amputation may be a valuable approach for increasing the utility of an already valuable biomedical research model.


Subject(s)
Hematology , Amputation, Surgical/veterinary , Animals , Female , Male , Xenopus laevis
15.
Front Cell Infect Microbiol ; 11: 745325, 2021.
Article in English | MEDLINE | ID: mdl-34888257

ABSTRACT

Successful bacterial pathogens have evolved to avoid activating an innate immune system in the host that responds to the pathogen through distinct Toll-like receptors (TLRs). The general class of biochemical components that activate TLRs has been studied extensively, but less is known about how TLRs interact with the class of compounds that are still associated with the live pathogen. Accordingly, we examined the activation of surface assembled TLR 2, 4, and 5 with live Tier 1 Gram-negative pathogens that included Yersinia pestis (plague), Burkholderia mallei (glanders), Burkholderia pseudomallei (melioidosis), and Francisella tularensis (tularemia). We found that Y. pestis CO92 grown at 28°C activated TLR2 and TLR4, but at 37°C the pathogen activated primarily TLR2. Although B. mallei and B. pseudomallei are genetically related, the former microorganism activated predominately TLR4, while the latter activated predominately TLR2. The capsule of wild-type B. pseudomallei 1026b was found to mitigate the activation of TLR2 and TLR4 when compared to a capsule mutant. Live F. tularensis (Ft) Schu S4 did not activate TLR2 or 4, although the less virulent Ft LVS and F. novicida activated only TLR2. B. pseudomallei purified flagellin or flagella attached to the microorganism activated TLR5. Activation of TLR5 was abolished by an antibody to TLR5, or a mutation of fliC, or elimination of the pathogen by filtration. In conclusion, we have uncovered new properties of the Gram-negative pathogens, and their interaction with TLRs of the host. Further studies are needed to include other microorganism to extend our observations with their interaction with TLRs, and to the possibility of leading to new efforts in therapeutics against these pathogens.


Subject(s)
Melioidosis , Toll-Like Receptor 4 , Animals , Flagella , Toll-Like Receptor 4/genetics , Toll-Like Receptor 5 , Toll-Like Receptors
16.
J Am Assoc Lab Anim Sci ; 60(6): 675-680, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34706790

ABSTRACT

This study evaluated the effects of using a heated anesthesia breathing circuit in addition to forced-air warming on body temperature in anesthetized rhesus macaques as compared with forced-air warming alone. Hypothermia is a common perianesthetic and intraoperative complication that can increase the risk of negative outcomes. Body heat is lost through 4 mechanisms during anesthesia: radiation, conduction, convection, and evaporation. Typical warming methods such as forced-air warming devices, conductive heating pads, and heated surgical tables only influence radiative and conductive mechanisms of heat loss. A commercially available heated breathing circuit that delivers gas warmed to 104 °F can easily be integrated into an anesthesia machine. We hypothesized that heating the inspired anesthetic gas to address the evaporative mechanism of heat loss would result in higher body temperature during anesthesia in rhesus macaques. Body temperatures were measured at 5-min intervals in a group of 10 adult male rhesus macaques during 2 anesthetic events: one with a heated anesthesia breathing circuit in addition to forced-air warming, and one with forced-air warming alone. The addition of a heated breathing circuit had a significant positive effect on perianesthetic body temperature, with a faster return to baseline temperature, earlier nadir of initial drop in body temperature, and higher body temperatures during a 2-h anesthetic procedure. Use of a heated anesthesia breathing circuit should be considered as a significant refinement to thermal support during macaque anesthesia, especially for procedures lasting longer than one hour.


Subject(s)
Anesthesia , Anesthetics, Inhalation , Hypothermia , Anesthesia/veterinary , Animals , Body Temperature , Body Temperature Regulation , Hot Temperature , Macaca mulatta , Male
17.
Sci Transl Med ; 13(623): eabh1682, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34878819

ABSTRACT

Anthrax is considered one of the most dangerous bioweapon agents, and concern about multidrug-resistant strains has led to the development of alternative therapeutic approaches that target the antiphagocytic capsule, an essential virulence determinant of Bacillus anthracis, the causative agent. Capsule depolymerase is a γ-glutamyltransferase that anchors the capsule to the cell wall of B. anthracis. Encapsulated strains of B. anthracis can be treated with recombinant capsule depolymerase to enzymatically remove the capsule and promote phagocytosis and killing by human neutrophils. Here, we show that pegylation improved the pharmacokinetic and therapeutic properties of a previously described variant of capsule depolymerase, CapD-CP, when delivered 24 hours after exposure every 8 hours for 2 days for the treatment of mice infected with B. anthracis. Mice infected with 382 LD50 of B. anthracis spores from a nontoxigenic encapsulated strain were completely protected (10 of 10) after treatment with the pegylated PEG-CapD-CPS334C, whereas 10% of control mice (1 of 10) survived with control treatment using bovine serum albumin (P < 0.0001, log-rank analysis). Treatment of mice infected with five LD50 of a fully virulent toxigenic, encapsulated B. anthracis strain with PEG-CapD-CPS334C protected 80% (8 of 10) of the animals, whereas 20% of controls (2 of 10) survived (P = 0.0125, log-rank analysis). This strategy renders B. anthracis susceptible to innate immune responses and does not rely on antibiotics. These findings suggest that enzyme-catalyzed removal of the capsule may be a potential therapeutic strategy for the treatment of multidrug- or vaccine-resistant anthrax and other bacterial infections.


Subject(s)
Anthrax Vaccines , Anthrax , Bacillus anthracis , Animals , Anthrax/drug therapy , Anthrax/microbiology , Anthrax Vaccines/therapeutic use , Antigens, Bacterial , Bacillus anthracis/physiology , Bacterial Capsules , Glycoside Hydrolases , Mice , Polyethylene Glycols
18.
Front Microbiol ; 12: 725776, 2021.
Article in English | MEDLINE | ID: mdl-34456897

ABSTRACT

Francisella tularensis is one of several biothreat agents for which a licensed vaccine is needed to protect against this pathogen. To aid in the development of a vaccine protective against pneumonic tularemia, we generated and characterized a panel of F. tularensis isolates that can be used as challenge strains to assess vaccine efficacy. Our panel consists of both historical and contemporary isolates derived from clinical and environmental sources, including human, tick, and rabbit isolates. Whole genome sequencing was performed to assess the genetic diversity in comparison to the reference genome F. tularensis Schu S4. Average nucleotide identity analysis showed >99% genomic similarity across the strains in our panel, and pan-genome analysis revealed a core genome of 1,707 genes, and an accessory genome of 233 genes. Three of the strains in our panel, FRAN254 (tick-derived), FRAN255 (a type B strain), and FRAN256 (a human isolate) exhibited variation from the other strains. Moreover, we identified several unique mutations within the Francisella Pathogenicity Island across multiple strains in our panel, revealing unexpected diversity in this region. Notably, FRAN031 (Scherm) completely lacked the second pathogenicity island but retained virulence in mice. In contrast, FRAN037 (Coll) was attenuated in a murine pneumonic tularemia model and had mutations in pdpB and iglA which likely led to attenuation. All of the strains, except FRAN037, retained full virulence, indicating their effectiveness as challenge strains for future vaccine testing. Overall, we provide a well-characterized panel of virulent F. tularensis strains that can be utilized in ongoing efforts to develop an effective vaccine against pneumonic tularemia to ensure protection is achieved across a range F. tularensis strains.

19.
Vaccines (Basel) ; 9(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34835150

ABSTRACT

Burkholderia pseudomallei is an infectious bacterium of clinical and biodefense concern, and is the causative agent of melioidosis. The mortality rate can reach up to 50% and affects 165,000 people per year; however, there is currently no vaccine available. In this study, we examine the antigen-specific immune response to a vaccine formulated with antigens derived from an outer membrane protein in B. pseudomallei, Bucl8. Here, we employed a number of bioinformatic tools to predict Bucl8-derived epitopes that are non-allergenic and non-toxic, but would elicit an immune response. From these data, we formulated a vaccine based on two extracellular components of Bucl8, the ß-barrel loops and extended collagen and non-collagen domains. Outbred CD-1 mice were immunized with vaccine formulations-composed of recombinant proteins or conjugated synthetic peptides with adjuvant-to assess the antigen-specific immune responses in mouse sera and lymphoid organs. We found that mice vaccinated with either Bucl8-derived components generated a robust TH2-skewed antibody response when antigen was combined with the adjuvant AddaVax, while the TH1 response was limited. Mice immunized with synthetic loop peptides had a stronger, more consistent antibody response than recombinant protein antigens, based on higher IgG titers and recognition of bacteria. We then compared peptide-based vaccines in an established C57BL/6 inbred mouse model and observed a similar TH2-skewed response. The resulting formulations will be applied in future studies examining the protection of Bucl8-derived vaccines.

20.
Front Immunol ; 12: 726416, 2021.
Article in English | MEDLINE | ID: mdl-34512658

ABSTRACT

Relatively recent advances in plague vaccinology have produced the recombinant fusion protein F1-V plague vaccine. This vaccine has been shown to readily protect mice from both bubonic and pneumonic plague. The protection afforded by this vaccine is solely based upon the immune response elicited by the F1 or V epitopes expressed on the F1-V fusion protein. Accordingly, questions remain surrounding its efficacy against infection with non-encapsulated (F1-negative) strains. In an attempt to further optimize the F1-V elicited immune response and address efficacy concerns, we examined the inclusion of multiple toll-like receptor agonists into vaccine regimens. We examined the resulting immune responses and also any protection afforded to mice that were exposed to aerosolized Yersinia pestis. Our data demonstrate that it is possible to further augment the F1-V vaccine strategy in order to optimize and augment vaccine efficacy.


Subject(s)
Adjuvants, Immunologic , Antigens, Bacterial/immunology , Plague Vaccine/immunology , Plague/prevention & control , Toll-Like Receptors/physiology , Animals , Female , Mice , Mice, Inbred BALB C , Plague/immunology , Vaccination , Vaccine Efficacy , Vaccines, Synthetic/immunology , Yersinia pestis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL