Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mol Cell ; 74(1): 45-58.e7, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30846317

ABSTRACT

Cells require a constant supply of fatty acids to survive and proliferate. Fatty acids incorporate into membrane and storage glycerolipids through a series of endoplasmic reticulum (ER) enzymes, but how these enzymes are regulated is not well understood. Here, using a combination of CRISPR-based genetic screens and unbiased lipidomics, we identified calcineurin B homologous protein 1 (CHP1) as a major regulator of ER glycerolipid synthesis. Loss of CHP1 severely reduces fatty acid incorporation and storage in mammalian cells and invertebrates. Mechanistically, CHP1 binds and activates GPAT4, which catalyzes the initial rate-limiting step in glycerolipid synthesis. GPAT4 activity requires CHP1 to be N-myristoylated, forming a key molecular interface between the two proteins. Interestingly, upon CHP1 loss, the peroxisomal enzyme, GNPAT, partially compensates for the loss of ER lipid synthesis, enabling cell proliferation. Thus, our work identifies a conserved regulator of glycerolipid metabolism and reveals plasticity in lipid synthesis of proliferating cells.


Subject(s)
Calcium-Binding Proteins/metabolism , Endoplasmic Reticulum/enzymology , Glycerides/biosynthesis , Glycerol-3-Phosphate O-Acyltransferase/metabolism , Lipogenesis , 3T3 Cells , Acyltransferases/genetics , Acyltransferases/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Calcium-Binding Proteins/genetics , Cell Proliferation , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/pathology , Enzyme Activation , Gene Expression Regulation, Enzymologic , Glycerol-3-Phosphate O-Acyltransferase/genetics , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Jurkat Cells , Lipogenesis/drug effects , Lipogenesis/genetics , Mice , Palmitic Acid/toxicity , Protein Binding
2.
Sci Adv ; 6(41)2020 10.
Article in English | MEDLINE | ID: mdl-33036978

ABSTRACT

Tumor environment influences anticancer therapy response but which extracellular nutrients affect drug sensitivity is largely unknown. Using functional genomics, we determine modifiers of l-asparaginase (ASNase) response and identify thiamine pyrophosphate kinase 1 as a metabolic dependency under ASNase treatment. While thiamine is generally not limiting for cell proliferation, a DNA-barcode competition assay identifies leukemia cell lines that grow suboptimally under low thiamine and are characterized by low expression of solute carrier family 19 member 2 (SLC19A2), a thiamine transporter. SLC19A2 is necessary for optimal growth and ASNase resistance, when standard medium thiamine is lowered ~100-fold to human plasma concentrations. In addition, humanizing blood thiamine content of mice through diet sensitizes SLC19A2-low leukemia cells to ASNase in vivo. Together, our work reveals that thiamine utilization is a determinant of ASNase response for some cancer cells and that oversupplying vitamins may affect therapeutic response in leukemia.


Subject(s)
Antineoplastic Agents , Leukemia , Animals , Antineoplastic Agents/therapeutic use , Asparaginase/metabolism , Asparaginase/pharmacology , Asparaginase/therapeutic use , Diet , Leukemia/drug therapy , Membrane Transport Proteins , Mice , Thiamine/pharmacology
3.
Nat Cell Biol ; 20(7): 775-781, 2018 07.
Article in English | MEDLINE | ID: mdl-29941933

ABSTRACT

As oxygen is essential for many metabolic pathways, tumour hypoxia may impair cancer cell proliferation1-4. However, the limiting metabolites for proliferation under hypoxia and in tumours are unknown. Here, we assessed proliferation of a collection of cancer cells following inhibition of the mitochondrial electron transport chain (ETC), a major metabolic pathway requiring molecular oxygen5. Sensitivity to ETC inhibition varied across cell lines, and subsequent metabolomic analysis uncovered aspartate availability as a major determinant of sensitivity. Cell lines least sensitive to ETC inhibition maintain aspartate levels by importing it through an aspartate/glutamate transporter, SLC1A3. Genetic or pharmacologic modulation of SLC1A3 activity markedly altered cancer cell sensitivity to ETC inhibitors. Interestingly, aspartate levels also decrease under low oxygen, and increasing aspartate import by SLC1A3 provides a competitive advantage to cancer cells at low oxygen levels and in tumour xenografts. Finally, aspartate levels in primary human tumours negatively correlate with the expression of hypoxia markers, suggesting that tumour hypoxia is sufficient to inhibit ETC and, consequently, aspartate synthesis in vivo. Therefore, aspartate may be a limiting metabolite for tumour growth, and aspartate availability could be targeted for cancer therapy.


Subject(s)
Aspartic Acid/metabolism , Cell Proliferation , Energy Metabolism , Neoplasms/metabolism , Tumor Hypoxia , Tumor Microenvironment , Adult , Aged , Aged, 80 and over , Animals , Antineoplastic Agents/pharmacology , Biological Transport , Cell Line, Tumor , Cell Proliferation/drug effects , Electron Transport Chain Complex Proteins/metabolism , Energy Metabolism/drug effects , Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 1/metabolism , Humans , Metabolomics/methods , Mice, Inbred NOD , Mice, SCID , Middle Aged , Mitochondria/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Signal Transduction , Time Factors , Tumor Burden , Xenograft Model Antitumor Assays , Young Adult
4.
Nat Cell Biol ; 20(10): 1228, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30089842

ABSTRACT

In the version of this Letter originally published, the competing interests statement was missing. The authors declare no competing interests; this statement has now been added in all online versions of the Letter.

SELECTION OF CITATIONS
SEARCH DETAIL