ABSTRACT
The polypeptide hormone Amylin (also known as islet amyloid polypeptide) plays a role in regulation of glucose metabolism, but forms pancreatic islet amyloid deposits in type 2 diabetes. The process of islet amyloid formation contributes to ß-cell dysfunction and the development of the disease. Amylin is produced as a pro-from and undergoes processing prior to secretion. The mature hormone contains an amidated C-terminus. Analysis of an alignment of vertebrate amylin sequences reveals that the processing signal for amidation is strictly conserved. Furthermore, the enzyme responsible for C-terminal amidation is found in all of these organisms. Comparison of the physiologically relevant amidated form to a variant with a free C-terminus (Amylin-COO-) shows that replacement of the C-terminal amide with a carboxylate slows, but does not prevent amyloid formation. Pre-fibrillar species produced by both variants are toxic to cultured ß-cells, although hAmylin-COO- is moderately less so. Amyloid fibrils produced by either peptide are not toxic. Prior work (ACS Pharmacol. Translational. Sci. 1, 132-49 (2018)) shows that Amylin- COO- exhibits a 58-fold reduction in activation of the Amylin1 receptor and 20-fold reduction in activation of the Amylin3 receptor. Thus, hAmylin-COO- exhibits significant toxicity, but significantly reduced activity and offers a reagent for studies which aim to decouple hAmylin's toxic effects from its activity. The different behaviours of free and C-terminal amidated Amylin should be considered when designing systems to produce the polypeptide recombinantly.
Subject(s)
Diabetes Mellitus, Type 2 , Peptide Hormones , Humans , Islet Amyloid Polypeptide/chemistry , Diabetes Mellitus, Type 2/metabolism , Amides , Amyloidogenic Proteins , Amyloid/chemistryABSTRACT
Conventional assumptions about multiphase flow in gas condensate reservoirs often do not correlate with field production. This discrepancy stems from the various mechanisms influencing the multiphase process, which are inadequately represented in numerical models. One of the least understood mechanisms is the influence of the non-equilibrium thermodynamics on the flow in the wellbore region, where the reservoir pressure is below the dew point pressure. To address this problem, experimental and mathematical analyses were conducted using a microfluidic device designed to replicate the flow dynamics in a gas condensate system. The experimental results showed an 11% deviation from the initial pressure of condensate saturation when compared with the conventional assumption of local equilibrium in numerical models. Similarly, there is a 14% deviation between the experimental and simulated volumes of the condensate. These findings underscore the inadequacy of existing models to accurately predict the saturation profile of the condensate phase. A mathematical model based on a relaxation parameter was applied to account for non-equilibrium phase separation and the fog state of the aerosol as observed in the microfluidic experiment. Incorporating a relaxation parameter ( τ ) enhanced the accuracy of the prediction of the initial pressure of the condensate saturation and an improvement in the prediction of the condensate volumes from 76% to 97.2%. Consequently, it provides a valuable framework and insight on the non-equilibrium phase behavior of gas condensate systems under constant flow regimes.