Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Immunol ; 16(12): 1235-44, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26502405

ABSTRACT

Ectopic lymphoid-like structures (ELSs) are often observed in cancer, yet their function is obscure. Although ELSs signify good prognosis in certain malignancies, we found that hepatic ELSs indicated poor prognosis for hepatocellular carcinoma (HCC). We studied an HCC mouse model that displayed abundant ELSs and found that they constituted immunopathological microniches wherein malignant hepatocyte progenitor cells appeared and thrived in a complex cellular and cytokine milieu until gaining self-sufficiency. The egress of progenitor cells and tumor formation were associated with the autocrine production of cytokines previously provided by the niche. ELSs developed via cooperation between the innate immune system and adaptive immune system, an event facilitated by activation of the transcription factor NF-κB and abolished by depletion of T cells. Such aberrant immunological foci might represent new targets for cancer therapy.


Subject(s)
Carcinoma, Hepatocellular/immunology , Liver Neoplasms/immunology , Lymphoid Tissue/immunology , Neoplastic Stem Cells/immunology , Stem Cell Niche/immunology , Adaptive Immunity/genetics , Adaptive Immunity/immunology , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Comparative Genomic Hybridization , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Hepatocytes/immunology , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , I-kappa B Kinase/genetics , I-kappa B Kinase/immunology , I-kappa B Kinase/metabolism , Immunity, Innate/genetics , Immunity, Innate/immunology , Immunoblotting , In Situ Hybridization , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Lymphoid Tissue/metabolism , Lymphoid Tissue/pathology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , NF-kappa B/genetics , NF-kappa B/immunology , NF-kappa B/metabolism , Neoplastic Stem Cells/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Stem Cell Niche/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transcriptome/genetics , Transcriptome/immunology
2.
Curr Top Microbiol Immunol ; 349: 185-96, 2011.
Article in English | MEDLINE | ID: mdl-20857271

ABSTRACT

The role of the NF-κB signaling pathway in liver cancer is complex. While some evidence suggests that in the liver, like in many other organ systems, NF-κB is oncogenic, there is strong evidence showing that in certain liver cancer models NF-κB suppresses tumorigenesis. These contrasting findings cannot be dismissed on technicalities and are likely due to the complex nature of the NF-κB response. Similar contrasting findings regarding NF-κB activity are revealed in skin cancer models. Thus, it is possible that the contradictory role of NF-κB in tumorigenesis is a general phenomenon and not an oddity related solely to the liver. Further studies are indicated to decipher the underlying molecular mechanisms. Revealing these mechanisms may facilitate the identification of patient subgroups and specific situations in which NF-κB inhibition will be a preferred therapeutic option. Moreover, it is possible that specific interventions could boost the tumor suppressor functions of NF-κB in tumors that harbor mutations that render this pathway constitutively active.


Subject(s)
Carcinoma, Hepatocellular/etiology , Liver Neoplasms/etiology , NF-kappa B/physiology , Animals , Humans , Signal Transduction
3.
Pharmacol Rep ; 69(5): 894-902, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28628850

ABSTRACT

BACKGROUND: Exposure of mice to D-galactosamine (GalN) and lipopolysaccharide (LPS) induces acute liver failure through elevation of TNF-α, which causes liver damage resembling that in humans. The current study evaluated in this model the effect of two indoline derivatives, which have anti-inflammatory activity in macrophages. METHODS: AN1297 and AN1284 (0.025-0.75mg/kg) or dexamethasone (3mg/kg), were injected subcutaneously, 15min before intraperitoneal injection of GalN (800mg) plus LPS (50µg) in male Balb/C mice. After 6h, their livers were evaluated histologically by staining with hematoxylin and eosin for tissue damage and by cleaved caspase 3 for apoptosis. Activity of liver enzymes, alanine transaminase (ALT) and aspartate aminotransferase (AST) and levels of TNF-α and IL-6 were measured in plasma, and those of TNF-α and IL-6, in the liver. RESULTS: AN1297 (0.075-0.75mg/kg) and AN1284 (0.25-0.75mg/kg) maximally reduced ALT by 51% and 80%, respectively. Only AN1284 (0.25 and 0.75mg/kg) reduced AST by 41% and 48%. AN1297 and AN1284 (0.25mg/kg) decreased activation of caspase 3 (a sign of apoptosis) by 80% and plasma TNF-α by 75%. AN1297 and AN1284 (0.075mg/kg) prevented the rise in TNF-α and IL-6 in the liver. AN1284 (0.25mg/kg) reduced mortality from 90% to 20% (p<0.01) and AN1297, to 60% (p=0.121). Both indoline derivatives inhibited the phosphorylation of MAPK p38 and DNA binding of the transcription factor, AP-1. CONCLUSION: While both compounds are highly potent anti-inflammatory agents, AN1284 is more effective in mitigating the underlying causes of GalN/LPS-induced acute liver failure in mice.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Indoles/pharmacology , Liver Failure, Acute/drug therapy , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Disease Models, Animal , Dose-Response Relationship, Drug , Galactosamine/toxicity , Gene Expression Regulation/drug effects , I-kappa B Kinase/metabolism , Indoles/administration & dosage , Indoles/chemistry , Interleukin-6/metabolism , Lipopolysaccharides/toxicity , Liver Failure, Acute/chemically induced , Male , Mice , Mice, Inbred BALB C , Mitogen-Activated Protein Kinase Kinases/metabolism , Nitric Oxide/metabolism , RAW 264.7 Cells , Transcription Factors , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL