Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38256054

ABSTRACT

Caveolae constitute membrane microdomains where receptors and ion channels functionally interact. Caveolin-3 (cav-3) is the key structural component of muscular caveolae. Mutations in CAV3 lead to caveolinopathies, which result in both muscular dystrophies and cardiac diseases. In cardiomyocytes, cav-1 participates with cav-3 to form caveolae; skeletal myotubes and adult skeletal fibers do not express cav-1. In the heart, the absence of cardiac alterations in the majority of cases may depend on a conserved organization of caveolae thanks to the expression of cav-1. We decided to focus on three specific cav-3 mutations (Δ62-64YTT; T78K and W101C) found in heterozygosis in patients suffering from skeletal muscle disorders. We overexpressed both the WT and mutated cav-3 together with ion channels interacting with and modulated by cav-3. Patch-clamp analysis conducted in caveolin-free cells (MEF-KO), revealed that the T78K mutant is dominant negative, causing its intracellular retention together with cav-3 WT, and inducing a significant reduction in current densities of all three ion channels tested. The other cav-3 mutations did not cause significant alterations. Mathematical modelling of the effects of cav-3 T78K would impair repolarization to levels incompatible with life. For this reason, we decided to compare the effects of this mutation in other cell lines that endogenously express cav-1 (MEF-STO and CHO cells) and to modulate cav-1 expression with an shRNA approach. In these systems, the membrane localization of cav-3 T78K was rescued in the presence of cav-1, and the current densities of hHCN4, hKv1.5 and hKir2.1 were also rescued. These results constitute the first evidence of a compensatory role of cav-1 in the heart, justifying the reduced susceptibility of this organ to caveolinopathies.


Subject(s)
Caveolin 1 , Caveolin 3 , Adult , Animals , Cricetinae , Humans , Caveolin 1/genetics , Caveolin 3/genetics , Cricetulus , Mutation , CHO Cells , Ion Channels
2.
Am J Hum Genet ; 107(6): 1078-1095, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33217308

ABSTRACT

The myosin-directed chaperone UNC-45B is essential for sarcomeric organization and muscle function from Caenorhabditis elegans to humans. The pathological impact of UNC-45B in muscle disease remained elusive. We report ten individuals with bi-allelic variants in UNC45B who exhibit childhood-onset progressive muscle weakness. We identified a common UNC45B variant that acts as a complex hypomorph splice variant. Purified UNC-45B mutants showed changes in folding and solubility. In situ localization studies further demonstrated reduced expression of mutant UNC-45B in muscle combined with abnormal localization away from the A-band towards the Z-disk of the sarcomere. The physiological relevance of these observations was investigated in C. elegans by transgenic expression of conserved UNC-45 missense variants, which showed impaired myosin binding for one and defective muscle function for three. Together, our results demonstrate that UNC-45B impairment manifests as a chaperonopathy with progressive muscle pathology, which discovers the previously unknown conserved role of UNC-45B in myofibrillar organization.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/physiology , Molecular Chaperones/genetics , Molecular Chaperones/physiology , Muscular Diseases/genetics , Mutation, Missense , Adolescent , Adult , Alleles , Animals , Caenorhabditis elegans , Female , Genetic Variation , Humans , Loss of Function Mutation , Male , Muscle, Skeletal/pathology , Myofibrils , Myosins , Sarcomeres/metabolism , Sequence Analysis, RNA , Transgenes , Exome Sequencing , Young Adult
3.
J Peripher Nerv Syst ; 28(4): 620-628, 2023 12.
Article in English | MEDLINE | ID: mdl-37897416

ABSTRACT

BACKGROUND AND AIMS: POLR3B gene encodes a subunit of RNA polymerase III (Pol III). Biallelic mutations in POLR3B are associated with leukodystrophies, but recently de novo heterozygous mutations have been described in early onset peripheral demyelinating neuropathies with or without central involvement. Here, we report the first Italian case carrying a de novo variant in POLR3B with a pure neuropathy phenotype and primary axonal involvement of the largest nerve fibers. METHODS: Nerve conduction studies, sympathetic skin response, dynamic sweat test, tactile and thermal quantitative sensory testing and brain magnetic resonance imaging were performed according to standard procedures. Histopathological examination was performed on skin and sural nerve biopsies. Molecular analysis of the proband and his relatives was performed with Next Generation Sequencing. The impact of the identified variant on the overall protein structure was evaluated through rotamers method. RESULTS: Since his early adolescence, the patient presented with signs of polyneuropathy with severe distal weakness, atrophy, and reduced sensation. Neurophysiological studies showed a sensory-motor axonal polyneuropathy, with confirmed small fiber involvement. In addition, skin biopsy and sural nerve biopsy showed predominant large fibers involvement. A trio's whole exome sequencing revealed a novel de novo variant p.(Arg1046Cys) in POLR3B, which was classified as Probably Pathogenic. Molecular modeling data confirmed a deleterious effect of the variant on protein structure. INTERPRETATION: Neurophysiological and morphological findings suggest a primary axonal involvement of the largest nerve fibers in POLR3B-related neuropathies. A partial loss of function mechanism is proposed for both neuropathy and leukodystrophy phenotypes.


Subject(s)
Demyelinating Diseases , Peripheral Nervous System Diseases , Polyneuropathies , RNA Polymerase III , Adolescent , Humans , Axons , Demyelinating Diseases/genetics , Mutation , Nerve Fibers/metabolism , Peripheral Nervous System Diseases/genetics , Polyneuropathies/genetics , Proteins/genetics , RNA Polymerase III/genetics , RNA Polymerase III/metabolism
4.
Neuropediatrics ; 54(3): 211-216, 2023 06.
Article in English | MEDLINE | ID: mdl-36693417

ABSTRACT

INTRODUCTION: Pyruvate dehydrogenase complex (PDH) deficiency (Online Mendelian Inheritance in Man # 312170) is a relatively common mitochondrial disorder, caused by mutations in the X-linked PDHA1 gene and presenting with a variable phenotypic spectrum, ranging from severe infantile encephalopathy to milder chronic neurological disorders.Isolated peripheral neuropathy as predominant clinical presentation is uncommon. RESULTS: We report on a patient, now 21 years old, presenting at the age of 2 years with recurrent symmetric weakness as first symptom of a PDH deficiency. Neurophysiological evaluation proving a sensory-motor polyneuropathy with conduction blocks and presence of elevated cerebrospinal fluid proteins, suggested a chronic inflammatory demyelinating polyneuropathy. The evidence of high serum lactate and the alterations in oxidative metabolism in muscle biopsy pointed toward the final diagnosis. After starting nutritional supplements, no further episodes occurred. A hemizygous mutation in PDHA1 (p.Arg88Cys) was identified. This mutation has been previously described in five patients with a similar phenotype. A three-dimensional reconstruction demonstrated that mutations affecting this arginine destabilize the interactions between the subunits of the E1 complex. CONCLUSION: We summarize the clinical and genetic characteristics of one patient with PDH deficiency presenting isolated peripheral nervous system involvement. This study highlights that the diagnosis of PDH deficiency should be considered in children with unexplained peripheral neuropathy, even with features suggestive of acquired forms, especially in case of early onset and limited response to treatment. A simple analysis of lactic acid could help to target the diagnosis.In addition, we suggest that the residue Arg88 is the most frequently involved in this specific phenotype of PDH deficiency.


Subject(s)
Polyradiculoneuropathy, Chronic Inflammatory Demyelinating , Pyruvate Dehydrogenase Complex Deficiency Disease , Humans , Lactic Acid/cerebrospinal fluid , Lactic Acid/therapeutic use , Mutation , Phenotype , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/diagnosis , Pyruvate Dehydrogenase Complex Deficiency Disease/diagnosis , Pyruvate Dehydrogenase Complex Deficiency Disease/drug therapy , Pyruvate Dehydrogenase Complex Deficiency Disease/genetics
5.
Neuropediatrics ; 54(6): 426-429, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37257496

ABSTRACT

Emery-Dreifuss muscular dystrophy (EDMD) is a rare disease characterized by early contractures, progressive muscle weakness, and cardiac abnormalities. Different subtypes of EDMD have been described, with the two most common forms represented by the X-linked EDMD1, caused by mutations in the EMD gene encoding emerin, and the autosomal EDMD2, due to mutations in the LMNA gene encoding lamin A/C. A clear definition of the magnetic resonance imaging (MRI) pattern in the two forms, and especially in the rarer EDMD1, is still lacking, although a preferential involvement of the medial head of the gastrocnemius has been suggested in EDMD2. We report a 13-year-old boy with mild limb girdle muscle weakness, elbow and ankle contractures, with absence of emerin at muscle biopsy, carrying a hemizygous frameshift mutation on the EMD gene (c.153dupC/p.Ser52Glufs*9) of maternal inheritance. Minor cardiac rhythm abnormalities were detected at 24-hour Holter electrocardiogram and required ß-blocker therapy. MRI scan of the thighs showed a mild diffuse involvement, while tibialis anterior, extensor digitorum longus, peroneus longus, and medial gastrocnemius were the most affected muscles in the leg. We also provide a review of the muscular MRI data in EDMD patients and highlight the relative heterogeneity of the MRI patterns found in EDMDs, suggesting that muscle MRI should be studied in larger EDMD cohorts to better define disease patterns and to cover the wide disease spectrum.


Subject(s)
Contracture , Muscular Dystrophy, Emery-Dreifuss , X-Linked Emery-Dreifuss Muscular Dystrophy , Male , Humans , Child , Adolescent , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Muscular Dystrophy, Emery-Dreifuss/diagnostic imaging , Muscular Dystrophy, Emery-Dreifuss/genetics , Muscular Dystrophy, Emery-Dreifuss/pathology , Mutation , Muscle Weakness , Magnetic Resonance Imaging
6.
EMBO J ; 37(23)2018 12 03.
Article in English | MEDLINE | ID: mdl-30420557

ABSTRACT

A set of glutamylases and deglutamylases controls levels of tubulin polyglutamylation, a prominent post-translational modification of neuronal microtubules. Defective tubulin polyglutamylation was first linked to neurodegeneration in the Purkinje cell degeneration (pcd) mouse, which lacks deglutamylase CCP1, displays massive cerebellar atrophy, and accumulates abnormally glutamylated tubulin in degenerating neurons. We found biallelic rare and damaging variants in the gene encoding CCP1 in 13 individuals with infantile-onset neurodegeneration and confirmed the absence of functional CCP1 along with dysregulated tubulin polyglutamylation. The human disease mainly affected the cerebellum, spinal motor neurons, and peripheral nerves. We also demonstrate previously unrecognized peripheral nerve and spinal motor neuron degeneration in pcd mice, which thus recapitulated key features of the human disease. Our findings link human neurodegeneration to tubulin polyglutamylation, entailing this post-translational modification as a potential target for drug development for neurodegenerative disorders.


Subject(s)
Carboxypeptidases/deficiency , Cerebellum/enzymology , Motor Neurons/enzymology , Peripheral Nerves/enzymology , Purkinje Cells/enzymology , Spine/enzymology , Spinocerebellar Degenerations/enzymology , Cerebellum/pathology , Female , GTP-Binding Proteins , Humans , Male , Motor Neurons/pathology , Peptides/genetics , Peptides/metabolism , Peripheral Nerves/pathology , Protein Processing, Post-Translational , Purkinje Cells/pathology , Serine-Type D-Ala-D-Ala Carboxypeptidase , Spine/pathology , Spinocerebellar Degenerations/genetics , Spinocerebellar Degenerations/pathology
7.
Neuropathol Appl Neurobiol ; 48(7): e12842, 2022 12.
Article in English | MEDLINE | ID: mdl-35904184

ABSTRACT

AIMS: SPTLC1-related disorder is a late onset sensory-autonomic neuropathy associated with perturbed sphingolipid homeostasis which can be improved by supplementation with the serine palmitoyl-CoA transferase (SPT) substrate, l-serine. Recently, a juvenile form of motor neuron disease has been linked to SPTLC1 variants. Variants affecting the p.S331 residue of SPTLC1 cause a distinct phenotype, whose pathogenic basis has not been established. This study aims to define the neuropathological and biochemical consequences of the SPTLC1 p.S331 variant, and test response to l-serine in this specific genotype. METHODS: We report clinical and neurophysiological characterisation of two unrelated children carrying distinct p.S331 SPTLC1 variants. The neuropathology was investigated by analysis of sural nerve and skin innervation. To clarify the biochemical consequences of the p.S331 variant, we performed sphingolipidomic profiling of serum and skin fibroblasts. We also tested the effect of l-serine supplementation in skin fibroblasts of patients with p.S331 mutations. RESULTS: In both patients, we recognised an early onset phenotype with prevalent progressive motor neuron disease. Neuropathology showed severe damage to the sensory and autonomic systems. Sphingolipidomic analysis showed the coexistence of neurotoxic deoxy-sphingolipids with an excess of canonical products of the SPT enzyme. l-serine supplementation in patient fibroblasts reduced production of toxic 1-deoxysphingolipids but further increased the overproduction of sphingolipids. CONCLUSIONS: Our findings suggest that p.S331 SPTLC1 variants lead to an overlap phenotype combining features of sensory and motor neuropathies, thus proposing a continuum in the spectrum of SPTLC1-related disorders. l-serine supplementation in these patients may be detrimental.


Subject(s)
Hereditary Sensory and Autonomic Neuropathies , Motor Neuron Disease , Peripheral Nervous System Diseases , Humans , Serine C-Palmitoyltransferase/chemistry , Serine C-Palmitoyltransferase/genetics , Mutation , Sphingolipids , Serine/chemistry , Serine/genetics
8.
Muscle Nerve ; 65(1): 96-104, 2022 01.
Article in English | MEDLINE | ID: mdl-34687219

ABSTRACT

INTRODUCTION/AIMS: Currently, there are no straightforward guidelines for the clinical and diagnostic management of hyperCKemia, a frequent and nonspecific presentation in muscle diseases. Therefore, we aimed to describe our diagnostic workflow for evaluating patients with this condition. METHODS: We selected 83 asymptomatic or minimally symptomatic patients with persistent hyperCKemia for participation in this Italian multicenter study. Patients with facial involvement and distal or congenital myopathies were excluded, as were patients with suspected inflammatory myopathies or predominant respiratory or cardiac involvement. All patients underwent a neurological examination and nerve conduction and electromyography studies. The first step of the investigation included a screening for Pompe disease. We then evaluated the patients for myotonic dystrophy type II-related CCTG expansion and excluded patients with copy number variations in the DMD gene. Subsequently, the undiagnosed patients were investigated using a target gene panel that included 20 genes associated with isolated hyperCKemia. RESULTS: Using this approach, we established a definitive diagnosis in one third of the patients. The detection rate was higher in patients with severe hyperCKemia and abnormal electromyographic findings. DISCUSSION: We have described our diagnostic workflow for isolated hyperCKemia, which is based on electrodiagnostic data, biochemical screening, and first-line genetic investigations, followed by successive targeted sequencing panels. Both clinical signs and electromyographic abnormalities are associated with increased diagnostic yields.


Subject(s)
Glycogen Storage Disease Type II , Muscular Diseases , Creatine Kinase , DNA Copy Number Variations , Electromyography , Glycogen Storage Disease Type II/diagnosis , Humans
9.
Brain ; 144(5): 1451-1466, 2021 06 22.
Article in English | MEDLINE | ID: mdl-33855352

ABSTRACT

Abnormal gut motility is a feature of several mitochondrial encephalomyopathies, and mutations in genes such as TYMP and POLG, have been linked to these rare diseases. The human genome encodes three DNA ligases, of which only one, ligase III (LIG3), has a mitochondrial splice variant and is crucial for mitochondrial health. We investigated the effect of reduced LIG3 activity and resulting mitochondrial dysfunction in seven patients from three independent families, who showed the common occurrence of gut dysmotility and neurological manifestations reminiscent of mitochondrial neurogastrointestinal encephalomyopathy. DNA from these patients was subjected to whole exome sequencing. In all patients, compound heterozygous variants in a new disease gene, LIG3, were identified. All variants were predicted to have a damaging effect on the protein. The LIG3 gene encodes the only mitochondrial DNA (mtDNA) ligase and therefore plays a pivotal role in mtDNA repair and replication. In vitro assays in patient-derived cells showed a decrease in LIG3 protein levels and ligase activity. We demonstrated that the LIG3 gene defects affect mtDNA maintenance, leading to mtDNA depletion without the accumulation of multiple deletions as observed in other mitochondrial disorders. This mitochondrial dysfunction is likely to cause the phenotypes observed in these patients. The most prominent and consistent clinical signs were severe gut dysmotility and neurological abnormalities, including leukoencephalopathy, epilepsy, migraine, stroke-like episodes, and neurogenic bladder. A decrease in the number of myenteric neurons, and increased fibrosis and elastin levels were the most prominent changes in the gut. Cytochrome c oxidase (COX) deficient fibres in skeletal muscle were also observed. Disruption of lig3 in zebrafish reproduced the brain alterations and impaired gut transit in vivo. In conclusion, we identified variants in the LIG3 gene that result in a mitochondrial disease characterized by predominant gut dysmotility, encephalopathy, and neuromuscular abnormalities.


Subject(s)
DNA Ligase ATP/genetics , Gastrointestinal Diseases/genetics , Gastrointestinal Motility/genetics , Mitochondrial Encephalomyopathies/genetics , Poly-ADP-Ribose Binding Proteins/genetics , Animals , Female , Gastrointestinal Diseases/pathology , Humans , Male , Mitochondrial Encephalomyopathies/pathology , Mutation , Pedigree , Zebrafish
10.
Neurol Sci ; 43(7): 4567-4570, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35391603

ABSTRACT

Inflammatory myopathies, including immune-mediated necrotizing myopathy (IMNM), are a rare and heterogeneous group of autoimmune diseases which can even involve extramuscular districts and seriously impact patients' quality of life. We report the case of a 76-year-old woman who developed muscle weakness, fatigue, and increased CK, following treatment with dapagliflozin, a sodium/glucose co-transporter 2 (SGLT2) inhibitor, and metformin. Neurophysiology, muscle biopsy, and antibody dosage confirmed the diagnosis of IMNM. The temporal correlation between the onset of clinical manifestations and the increase in the dosage of antidiabetic drugs, the improvement of symptoms with the dechallenge of dapagliflozin, and the exclusion of other possible causes triggering myopathy suggests that this may be the first case of dapagliflozin-induced myopathy, different from the former one associated with the use of SGLT2 inhibitors.


Subject(s)
Autoimmune Diseases , Muscular Diseases , Myositis , Sodium-Glucose Transporter 2 Inhibitors , Aged , Autoantibodies , Autoimmune Diseases/pathology , Female , Glucose , Humans , Muscle, Skeletal/pathology , Muscular Diseases/diagnosis , Myositis/chemically induced , Myositis/pathology , Necrosis/chemically induced , Necrosis/pathology , Quality of Life , Sodium/adverse effects , Sodium-Glucose Transporter 2/adverse effects , Sodium-Glucose Transporter 2 Inhibitors/adverse effects
11.
Clin Neuropathol ; 40(6): 310-318, 2021.
Article in English | MEDLINE | ID: mdl-34281632

ABSTRACT

AIM: Since the immune system plays a role in the pathogenesis of several muscular dystrophies, we aim to characterize several muscular inflammatory features in α- (LGMD R3) and γ-sarcoglycanopathies (LGMD R5). MATERIALS AND METHODS: We explored the expression of major histocompatibility complex class I molecules (MHCI), and we analyzed the composition of the immune infiltrates in muscle biopsies from 10 patients with LGMD R3 and 8 patients with LGMD R5, comparing the results to Duchenne muscular dystrophy patients (DMD). RESULTS: A consistent involvement of the immune response was observed in sarcoglycanopathies, although it was less evident than in DMD. LGMD R3-R5 and DMD shared an abnormal expression of MHCI, and the composition of the muscular immune cell infiltrate was comparable. CONCLUSION: These findings might serve as a rationale to fine-tune a disease-specific immunomodulatory regimen, particularly relevant in view of the rapid development of gene therapy for sarcoglycanopathies.


Subject(s)
Muscular Dystrophies , Myositis , Sarcoglycanopathies , Biopsy , Humans , Muscle, Skeletal , Sarcoglycanopathies/genetics
12.
Int J Mol Sci ; 22(16)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34445196

ABSTRACT

The term hereditary ataxia (HA) refers to a heterogeneous group of neurological disorders with multiple genetic etiologies and a wide spectrum of ataxia-dominated phenotypes. Massive gene analysis in next-generation sequencing has entered the HA scenario, broadening our genetic and clinical knowledge of these conditions. In this study, we employed a targeted resequencing panel (TRP) in a large and highly heterogeneous cohort of 377 patients with a clinical diagnosis of HA, but no molecular diagnosis on routine genetic tests. We obtained a positive result (genetic diagnosis) in 33.2% of the patients, a rate significantly higher than those reported in similar studies employing TRP (average 19.4%), and in line with those performed using exome sequencing (ES, average 34.6%). Moreover, 15.6% of the patients had an uncertain molecular diagnosis. STUB1, PRKCG, and SPG7 were the most common causative genes. A comparison with published literature data showed that our panel would have identified 97% of the positive cases reported in previous TRP-based studies and 92% of those diagnosed by ES. Proper use of multigene panels, when combined with detailed phenotypic data, seems to be even more efficient than ES in clinical practice.


Subject(s)
High-Throughput Nucleotide Sequencing , Spinocerebellar Degenerations/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Genetic Testing , Humans , Male , Middle Aged , Mutation , Exome Sequencing , Young Adult
13.
Neurobiol Dis ; 137: 104757, 2020 04.
Article in English | MEDLINE | ID: mdl-31978608

ABSTRACT

Elastin microfibril interface-located proteins (EMILINs) are extracellular matrix glycoproteins implicated in elastogenesis and cell proliferation. Recently, a missense mutation in the EMILIN1 gene has been associated with autosomal dominant connective tissue disorder and motor-sensory neuropathy in a single family. We identified by whole exome sequencing a novel heterozygous EMILIN1 mutation c.748C>T [p.R250C] located in the coiled coil forming region of the protein, in four affected members of an autosomal dominant family presenting a distal motor neuropathy phenotype. In affected patient a sensory nerve biopsy showed slight and unspecific changes in the number and morphology of myelinated fibers. Immunofluorescence study of a motor nerve within a muscle biopsy documented the presence of EMILIN-1 in nerve structures. Skin section and skin derived fibroblasts displayed a reduced extracellular deposition of EMILIN-1 protein with a disorganized network of poorly ramified fibers in comparison with controls. Downregulation of emilin1a in zebrafish displayed developmental delay, locomotion defects, and abnormal axonal arborization from spinal cord motor neurons. The phenotype was complemented by wild-type zebrafish emilin1a, and partially the human wild-type EMILIN1 cRNA, but not by the cRNA harboring the novel c.748C>T [p.R250C]. These data suggest a role of EMILIN-1 in the pathogenesis of diseases affecting the peripheral nervous system.


Subject(s)
Fibroblasts/pathology , Membrane Glycoproteins/genetics , Mutation/genetics , Skin/pathology , Adolescent , Animals , Humans , Male , Middle Aged , Phenotype , Young Adult , Zebrafish
14.
Genet Med ; 22(12): 2029-2040, 2020 12.
Article in English | MEDLINE | ID: mdl-32778822

ABSTRACT

PURPOSE: High throughput sequencing analysis has facilitated the rapid analysis of the entire titin (TTN) coding sequence. This has resulted in the identification of a growing number of recessive titinopathy patients. The aim of this study was to (1) characterize the causative genetic variants and clinical features of the largest cohort of recessive titinopathy patients reported to date and (2) to evaluate genotype-phenotype correlations in this cohort. METHODS: We analyzed clinical and genetic data in a cohort of patients with biallelic pathogenic or likely pathogenic TTN variants. The cohort included both previously reported cases (100 patients from 81 unrelated families) and unreported cases (23 patients from 20 unrelated families). RESULTS: Overall, 132 causative variants were identified in cohort members. More than half of the cases had hypotonia at birth or muscle weakness and a delayed motor development within the first 12 months of life (congenital myopathy) with causative variants located along the entire gene. The remaining patients had a distal or proximal phenotype and a childhood or later (noncongenital) onset. All noncongenital cases had at least one pathogenic variant in one of the final three TTN exons (362-364). CONCLUSION: Our findings suggest a novel association between the location of nonsense variants and the clinical severity of the disease.


Subject(s)
High-Throughput Nucleotide Sequencing , Muscle Hypotonia , Child , Connectin/genetics , Genetic Association Studies , Humans , Mutation , Phenotype
15.
Am J Pathol ; 189(2): 354-369, 2019 02.
Article in English | MEDLINE | ID: mdl-30448410

ABSTRACT

In muscular dystrophies, muscle membrane fragility results in a tissue-specific increase of danger-associated molecular pattern molecules (DAMPs) and infiltration of inflammatory cells. The DAMP extracellular ATP (eATP) released by dying myofibers steadily activates muscle and immune purinergic receptors exerting dual negative effects: a direct damage linked to altered intracellular calcium homeostasis in muscle cells and an indirect toxicity through the triggering of the immune response and inhibition of regulatory T cells. Accordingly, pharmacologic and genetic inhibition of eATP signaling improves the phenotype in models of chronic inflammatory diseases. In α-sarcoglycanopathy, eATP effects may be further amplified because α-sarcoglycan extracellular domain binds eATP and displays an ecto-ATPase activity, thus controlling eATP concentration at the cell surface and attenuating the magnitude and/or the duration of eATP-induced signals. Herein, we show that in vivo blockade of the eATP/P2X purinergic pathway by a broad-spectrum P2X receptor-antagonist delayed the progression of the dystrophic phenotype in α-sarcoglycan-null mice. eATP blockade dampened the muscular inflammatory response and enhanced the recruitment of forkhead box protein P3-positive immunosuppressive regulatory CD4+ T cells. The improvement of the inflammatory features was associated with increased strength, reduced necrosis, and limited expression of profibrotic factors, suggesting that pharmacologic purinergic antagonism, altering the innate and adaptive immune component in muscle infiltrates, might provide a therapeutic approach to slow disease progression in α-sarcoglycanopathy.


Subject(s)
Adenosine Triphosphate/immunology , Muscular Dystrophy, Animal , Myofibrils , Sarcoglycans/deficiency , T-Lymphocytes, Regulatory , Adenosine Triphosphate/genetics , Animals , Calcium/immunology , Chronic Disease , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Mice , Mice, Knockout , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/immunology , Muscular Dystrophy, Animal/pathology , Myofibrils/immunology , Myofibrils/pathology , Receptors, Purinergic P2X/genetics , Receptors, Purinergic P2X/immunology , Sarcoglycans/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology
16.
Brain ; 142(12): 3876-3891, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31688942

ABSTRACT

Ohtahara syndrome, early infantile epileptic encephalopathy with a suppression burst EEG pattern, is an aetiologically heterogeneous condition starting in the first weeks or months of life with intractable seizures and profound developmental disability. Using whole exome sequencing, we identified biallelic DMXL2 mutations in three sibling pairs with Ohtahara syndrome, belonging to three unrelated families. Siblings in Family 1 were compound heterozygous for the c.5135C>T (p.Ala1712Val) missense substitution and the c.4478C>G (p.Ser1493*) nonsense substitution; in Family 2 were homozygous for the c.4478C>A (p.Ser1493*) nonsense substitution and in Family 3 were homozygous for the c.7518-1G>A (p.Trp2507Argfs*4) substitution. The severe developmental and epileptic encephalopathy manifested from the first day of life and was associated with deafness, mild peripheral polyneuropathy and dysmorphic features. Early brain MRI investigations in the first months of life revealed thin corpus callosum with brain hypomyelination in all. Follow-up MRI scans in three patients revealed progressive moderate brain shrinkage with leukoencephalopathy. Five patients died within the first 9 years of life and none achieved developmental, communicative or motor skills following birth. These clinical findings are consistent with a developmental brain disorder that begins in the prenatal brain, prevents neural connections from reaching the expected stages at birth, and follows a progressive course. DMXL2 is highly expressed in the brain and at synaptic terminals, regulates v-ATPase assembly and activity and participates in intracellular signalling pathways; however, its functional role is far from complete elucidation. Expression analysis in patient-derived skin fibroblasts demonstrated absence of the DMXL2 protein, revealing a loss of function phenotype. Patients' fibroblasts also exhibited an increased LysoTracker® signal associated with decreased endolysosomal markers and degradative processes. Defective endolysosomal homeostasis was accompanied by impaired autophagy, revealed by lower LC3II signal, accumulation of polyubiquitinated proteins, and autophagy receptor p62, with morphological alterations of the autolysosomal structures on electron microscopy. Altered lysosomal homeostasis and defective autophagy were recapitulated in Dmxl2-silenced mouse hippocampal neurons, which exhibited impaired neurite elongation and synaptic loss. Impaired lysosomal function and autophagy caused by biallelic DMXL2 mutations affect neuronal development and synapse formation and result in Ohtahara syndrome with profound developmental impairment and reduced life expectancy.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Autophagy/genetics , Brain/physiopathology , Nerve Tissue Proteins/genetics , Spasms, Infantile/genetics , Brain/diagnostic imaging , Child , Child, Preschool , Disease Progression , Electroencephalography , Female , Humans , Infant , Lysosomes/physiology , Magnetic Resonance Imaging , Male , Mutation , Pedigree , Spasms, Infantile/diagnostic imaging , Spasms, Infantile/physiopathology , Exome Sequencing
17.
Neuropediatrics ; 51(6): 425-429, 2020 12.
Article in English | MEDLINE | ID: mdl-32392611

ABSTRACT

RTN4IP1 pathogenic variants (OPA10 syndrome) have been described in patients with early-onset recessive optic neuropathy and recently associated with a broader clinical spectrum, from isolated optic neuropathy to severe encephalopathies with epilepsy. Here we present a case of a patient with a complex clinical picture characterized by bilateral optic nerve atrophy, horizontal nystagmus, myopia, mild intellectual disability, generalized chorea, isolated small subependymal heterotopia, and asynchronous self-resolving midbrain MRI (magnetic resonance imaging) lesions. By using massive gene sequencing, we identified in this patient the c.308G > A (p.Arg103His) homozygous pathogenic variant in the RTN4IP1 gene. Complex movement disorders and relapsing-remitting neuroradiological lesions have not been previously reported in this condition. Our case expands the clinical spectrum of OPA10 syndrome and opens new opportunities for the molecular diagnosis.


Subject(s)
Carrier Proteins/genetics , Chorea/diagnosis , Chorea/genetics , Mitochondrial Proteins/genetics , Optic Atrophy/diagnosis , Optic Atrophy/genetics , Brain/pathology , Child , Chorea/complications , Humans , Male , Mutation , Optic Atrophy/complications
18.
Int J Mol Sci ; 21(7)2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32290091

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is characterized by incomplete penetrance and intra-familial clinical variability. The disease has been associated with the genetic and epigenetic features of the D4Z4 repetitive elements at 4q35. Recently, D4Z4 hypomethylation has been proposed as a reliable marker in the FSHD diagnosis. We exploited the Italian Registry for FSHD, in which FSHD families are classified using the Clinical Comprehensive Evaluation Form (CCEF). A total of 122 index cases showing a classical FSHD phenotype (CCEF, category A) and 110 relatives were selected to test with the receiver operating characteristic (ROC) curve, the diagnostic and predictive value of D4Z4 methylation. Moreover, we performed DNA methylation analysis in selected large families with reduced penetrance characterized by the co-presence of subjects carriers of one D4Z4 reduced allele with no signs of disease or presenting the classic FSHD clinical phenotype. We observed a wide variability in the D4Z4 methylation levels among index cases revealing no association with clinical manifestation or disease severity. By extending the analysis to family members, we revealed the low predictive value of D4Z4 methylation in detecting the affected condition. In view of the variability in D4Z4 methylation profiles observed in our large cohort, we conclude that D4Z4 methylation does not mirror the clinical expression of FSHD. We recommend that measurement of this epigenetic mark must be interpreted with caution in clinical practice.


Subject(s)
Epigenesis, Genetic , Epigenomics , Genetic Association Studies , Genotype , Muscular Dystrophy, Facioscapulohumeral/diagnosis , Muscular Dystrophy, Facioscapulohumeral/genetics , Phenotype , Alleles , Biological Variation, Population , DNA Methylation , Epigenomics/methods , Family , Genetic Predisposition to Disease , Humans , Pedigree , ROC Curve
19.
Neurogenetics ; 20(3): 165-172, 2019 08.
Article in English | MEDLINE | ID: mdl-31267352

ABSTRACT

TSFM is a nuclear gene encoding the elongation factor Ts (EFTs), an essential component of mitochondrial translational machinery. Impaired mitochondrial translation is responsible for neurodegenerative disorders characterized by multiple respiratory chain complex defects, multisystemic involvement, and neuroradiological features of Leigh-like syndrome. With the use of a next-generation sequencing (NGS)-based multigene panel for mitochondrial disorders, we identified the novel TSFM homozygous variant c.547G>A (p.Gly183Ser) in a 5-year-old boy with infantile early onset encephalocardiomyopathy, sensorineural hearing loss, and peculiar partially reversible neuroimaging features. Our findings expand the phenotypic spectrum of TSFM-related encephalopathy, offering new insights into the natural history of brain involvement and suggesting that TSFM should be investigated in pediatric mitochondrial disorders with distinctive neurologic and cardiac involvement.


Subject(s)
Brain Diseases/genetics , Cardiomyopathies/genetics , Genetic Variation , Hearing Loss, Sensorineural/genetics , Mitochondrial Proteins/genetics , Peptide Elongation Factors/genetics , Biopsy , Brain/diagnostic imaging , Brain Diseases/complications , Cardiomyopathies/complications , Child, Preschool , Developmental Disabilities/genetics , Electron Transport , Hearing Loss, Sensorineural/complications , High-Throughput Nucleotide Sequencing , Homozygote , Humans , Magnetic Resonance Imaging , Male , Mitochondrial Diseases/genetics , Muscle Hypotonia/genetics , Neuroimaging , Oligonucleotide Array Sequence Analysis , Protein Biosynthesis
20.
Am J Hum Genet ; 99(3): 753-761, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27569547

ABSTRACT

The neuromuscular junction (NMJ) is one of the best-studied cholinergic synapses. Inherited defects of peripheral neurotransmission result in congenital myasthenic syndromes (CMSs), a clinically and genetically heterogeneous group of rare diseases with fluctuating fatigable muscle weakness as the clinical hallmark. Whole-exome sequencing and Sanger sequencing in six unrelated families identified compound heterozygous and homozygous mutations in SLC5A7 encoding the presynaptic sodium-dependent high-affinity choline transporter 1 (CHT), which is known to be mutated in one dominant form of distal motor neuronopathy (DHMN7A). We identified 11 recessive mutations in SLC5A7 that were associated with a spectrum of severe muscle weakness ranging from a lethal antenatal form of arthrogryposis and severe hypotonia to a neonatal form of CMS with episodic apnea and a favorable prognosis when well managed at the clinical level. As expected given the critical role of CHT for multisystemic cholinergic neurotransmission, autonomic dysfunctions were reported in the antenatal form and cognitive impairment was noticed in half of the persons with the neonatal form. The missense mutations induced a near complete loss of function of CHT activity in cell models. At the human NMJ, a delay in synaptic maturation and an altered maintenance were observed in the antenatal and neonatal forms, respectively. Increased synaptic expression of butyrylcholinesterase was also observed, exposing the dysfunction of cholinergic metabolism when CHT is deficient in vivo. This work broadens the clinical spectrum of human diseases resulting from reduced CHT activity and highlights the complexity of cholinergic metabolism at the synapse.


Subject(s)
Apnea/genetics , Mutation/genetics , Myasthenia Gravis/genetics , Presynaptic Terminals/metabolism , Symporters/genetics , Symporters/metabolism , Adolescent , Apnea/complications , Apnea/metabolism , Apnea/pathology , Arthrogryposis/complications , Arthrogryposis/genetics , Butyrylcholinesterase/metabolism , Child , Child, Preschool , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , DNA Mutational Analysis , Exome/genetics , Female , Genes, Recessive/genetics , HEK293 Cells , Heterozygote , Homozygote , Humans , Infant , Infant, Newborn , Male , Muscle Hypotonia/genetics , Muscle Weakness/complications , Muscle Weakness/genetics , Muscle Weakness/pathology , Mutation, Missense/genetics , Myasthenia Gravis/complications , Myasthenia Gravis/metabolism , Myasthenia Gravis/pathology , Neuromuscular Junction/enzymology , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Presynaptic Terminals/pathology , Symporters/deficiency , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL