ABSTRACT
Purpose: This study was motivated by the need for better positron emission tomography (PET)-compatible tools to image bacterial infection. Our previous efforts have targeted bacteria-specific metabolism via assimilation of carbon-11 labeled d-amino acids into the bacterial cell wall. Since the chemical determinants of this incorporation are not fully understood, we sought a high-throughput method to label d-amino acid derived structures with fluorine-18. Our strategy employed a chemical biology approach, whereby an azide (-N3) bearing d-amino acid is incorporated into peptidoglycan muropeptides, with subsequent "click" cycloaddition with an 18F-labeled strained cyclooctyne partner. Procedures: A water-soluble, 18F-labeled and dibenzocyclooctyne (DBCO)-derived radiotracer ([18F]FB-sulfo-DBCO) was synthesized. This tracer was incubated with pathogenic bacteria treated with azide-bearing d-amino acids, and incorporated 18F was determined via gamma counting. In vitro uptake in bacteria previously treated with azide-modified d-amino acids was compared to that in cultures treated with amino acid controls. The biodistribution of [18F]FB-sulfo-DBCO was studied in a cohort of healthy mice with implications for future in vivo imaging. Results: The new strain-promoted azide-alkyne cycloaddition (SPAAC) radiotracer [18F]FB-sulfo-DBCO was synthesized with high radiochemical yield and purity via N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB). Accumulation of [18F]FB-sulfo-DBCO was significantly higher in several bacteria treated with azide-modified d-amino acids than in controls; for example, we observed 7 times greater [18F]FB-sulfo-DBCO ligation in Staphylococcus aureus cultures incubated with 3-azido-d-alanine versus those incubated with d-alanine. Conclusions: The SPAAC radiotracer [18F]FB-sulfo-DBCO was validated in vitro via metabolic labeling of azide-bearing peptidoglycan muropeptides. d-Amino acid-derived PET radiotracers may be more efficiently screened via [18F]FB-sulfo-DBCO modification.
Subject(s)
Azides , Peptidoglycan , Humans , Animals , Mice , Azides/chemistry , Tissue Distribution , Positron-Emission Tomography , Bacteria , Amino Acids , Alanine , Fluorine Radioisotopes/chemistryABSTRACT
BACKGROUND: Vertebral discitis-osteomyelitis (VDO) is a devastating infection of the spine that is challenging to distinguish from noninfectious mimics using computed tomography and magnetic resonance imaging. We and others have developed novel metabolism-targeted positron emission tomography (PET) radiotracers for detecting living Staphylococcus aureus and other bacteria in vivo, but their head-to-head performance in a well-validated VDO animal model has not been reported. METHODS: We compared the performance of several PET radiotracers in a rat model of VDO. [11C]PABA and [18F]FDS were assessed for their ability to distinguish S aureus, the most common non-tuberculous pathogen VDO, from Escherichia coli. RESULTS: In the rat S aureus VDO model, [11C]PABA could detect as few as 103 bacteria and exhibited the highest signal-to-background ratio, with a 20-fold increased signal in VDO compared to uninfected tissues. In a proof-of-concept experiment, detection of bacterial infection and discrimination between S aureus and E coli was possible using a combination of [11C]PABA and [18F]FDS. CONCLUSIONS: Our work reveals that several bacteria-targeted PET radiotracers had sufficient signal to background in a rat model of S aureus VDO to be potentially clinically useful. [11C]PABA was the most promising tracer investigated and warrants further investigation in human VDO.
Subject(s)
Discitis , Osteomyelitis , Staphylococcal Infections , Humans , Rats , Animals , Discitis/diagnostic imaging , 4-Aminobenzoic Acid , Escherichia coli , Positron-Emission Tomography/methods , Staphylococcal Infections/diagnostic imaging , Osteomyelitis/microbiology , Bacteria , Staphylococcus aureus , RadiopharmaceuticalsABSTRACT
Chemoenzymatic techniques have been applied extensively to pharmaceutical development, most effectively when routine synthetic methods fail. The regioselective and stereoselective construction of structurally complex glycans is an elegant application of this approach that is seldom applied to positron emission tomography (PET) tracers. We sought a method to dimerize 2-deoxy-[18F]-fluoro-d-glucose ([18F]FDG), the most common tracer used in clinical imaging, to form [18F]-labeled disaccharides for detecting microorganisms in vivo based on their bacteria-specific glycan incorporation. When [18F]FDG was reacted with ß-d-glucose-1-phosphate in the presence of maltose phosphorylase, the α-1,4- and α-1,3-linked products 2-deoxy-[18F]-fluoro-maltose ([18F]FDM) and 2-deoxy-2-[18F]-fluoro-sakebiose ([18F]FSK) were obtained. This method was further extended with the use of trehalose (α,α-1,1), laminaribiose (ß-1,3), and cellobiose (ß-1,4) phosphorylases to synthesize 2-deoxy-2-[18F]fluoro-trehalose ([18F]FDT), 2-deoxy-2-[18F]fluoro-laminaribiose ([18F]FDL), and 2-deoxy-2-[18F]fluoro-cellobiose ([18F]FDC). We subsequently tested [18F]FDM and [18F]FSK in vitro, showing accumulation by several clinically relevant pathogens including Staphylococcus aureus and Acinetobacter baumannii, and demonstrated their specific uptake in vivo. Both [18F]FDM and [18F]FSK were stable in human serum with high accumulation in preclinical infection models. The synthetic ease and high sensitivity of [18F]FDM and [18F]FSK to S. aureus including methicillin-resistant (MRSA) strains strongly justify clinical translation of these tracers to infected patients. Furthermore, this work suggests that chemoenzymatic radiosyntheses of complex [18F]FDG-derived oligomers will afford a wide array of PET radiotracers for infectious and oncologic applications.
Subject(s)
Fluorodeoxyglucose F18 , Trehalose , Humans , Cellobiose , Staphylococcus aureus , Positron-Emission Tomography/methods , BacteriaABSTRACT
Radionuclide therapy is a rapidly expanding oncological treatment method. Overwhelmingly, the application of radionuclide therapy in clinical practice relies on fixed or empirical dosing strategies. In principle, the application of dosimetry promises to improve patient outcomes by tailoring administered radionuclide therapy activities to each patient's unique tumour burden and tumour uptake. However, robust prospective data are scarce due to few prospective randomised clinical trials investigating the use of dosimetry in radionuclide therapy. In this Review, we describe the role of dosimetry as it has been applied historically and in modern clinical practice and its potential future applications. We further emphasise areas of future growth and a potential pathway to optimised personalised activity modulation of radionuclide therapy.
Subject(s)
Neoplasms/radiotherapy , Prostatic Neoplasms/radiotherapy , Radioisotopes/therapeutic use , Radiotherapy Dosage , Humans , Liver Neoplasms/radiotherapy , Male , Neuroblastoma/radiotherapy , Thyroid Neoplasms/radiotherapyABSTRACT
INTRODUCTION: The 2021 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Prostate Cancer Research in the 21st Century," was held virtually, from June 24-25, 2021. METHODS: The CHPCA Meeting is organized by the Prostate Cancer Foundation as a unique discussion-oriented meeting focusing on critical topics in prostate cancer research envisioned to bridge the next major advances in prostate cancer biology and treatment. The 2021 CHPCA Meeting was virtually attended by 89 investigators and included 31 talks over nine sessions. RESULTS: Major topic areas discussed at the meeting included: cancer genomics and sequencing, functional genomic approaches to studying mediators of plasticity, emerging signaling pathways in metastatic castration resistant prostate cancer, Wnt signaling biology and the challenges of targeted therapy, clonal hematopoiesis, neuroendocrine cell plasticity and antitumor immunity, cancer immunotherapy and its synergizers, and imaging the tumor microenvironment and metabolism. DISCUSSION: This meeting report summarizes the research presented at the 2021 CHPCA Meeting. We hope that publication of this knowledge will accelerate new understandings and the development of new biomarkers and treatments for prostate cancer.
Subject(s)
Immunotherapy/methods , Prostate , Prostatic Neoplasms , Congresses as Topic , Humans , Male , Prostate/diagnostic imaging , Prostate/immunology , Prostate/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Research/trendsABSTRACT
PURPOSE: This study aimed to develop and demonstrate the in vivo feasibility of a 3D stack-of-spiral balanced steady-state free precession(3D-bSSFP) urea sequence, interleaved with a metabolite-specific gradient echo (GRE) sequence for pyruvate and metabolic products, for improving the SNR and spatial resolution of the first hyperpolarized 13 C-MRI human study with injection of co-hyperpolarized [1-13 C]pyruvate and [13 C,15 N2 ]urea. METHODS: A metabolite-specific bSSFP urea imaging sequence was designed using a urea-specific excitation pulse, optimized TR, and 3D stack-of-spiral readouts. Simulations and phantom studies were performed to validate the spectral response of the sequence. The image quality of urea data acquired by the 3D-bSSFP sequence and the 2D-GRE sequence was evaluated with 2 identical injections of co-hyperpolarized [1-13 C]pyruvate and [13 C,15 N2 ]urea formula in a rat. Subsequently, the feasibility of the acquisition strategy was validated in a prostate cancer patient. RESULTS: Simulations and phantom studies demonstrated that 3D-bSSFP sequence achieved urea-only excitation, while minimally perturbing other metabolites (<1%). An animal study demonstrated that compared to GRE, bSSFP sequence provided an â¼2.5-fold improvement in SNR without perturbing urea or pyruvate kinetics, and bSSFP approach with a shorter spiral readout reduced blurring artifacts caused by J-coupling of [13 C,15 N2 ]urea. The human study demonstrated the in vivo feasibility and data quality of the acquisition strategy. CONCLUSION: The 3D-bSSFP urea sequence with a stack-of-spiral acquisition demonstrated significantly increased SNR and image quality for [13 C,15 N2 ]urea in co-hyperpolarized [1-13 C]pyruvate and [13 C,15 N2 ]urea imaging studies. This work lays the foundation for future human studies to achieve high-quality and high-SNR metabolism and perfusion images.
Subject(s)
Pyruvic Acid , Urea , Animals , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Male , Perfusion , Pyruvic Acid/metabolism , RatsABSTRACT
PURPOSE: Non-invasive imaging is a key clinical tool for detection and treatment monitoring of infections. Existing clinical imaging techniques are frequently unable to distinguish infection from tumors or sterile inflammation. This challenge is well-illustrated by prosthetic joint infections that often complicate joint replacements. D-methyl-11C-methionine (D-11C-Met) is a new bacteria-specific PET radiotracer, based on an amino acid D-enantiomer, that is rapidly incorporated into the bacterial cell wall. In this manuscript, we describe the biodistribution, radiation dosimetry, and initial human experience using D-11C-Met in patients with suspected prosthetic joint infections. METHODS: 614.5 ± 100.2 MBq of D-11C-Met was synthesized using an automated in-loop radiosynthesis method and administered to six healthy volunteers and five patients with suspected prosthetic joint infection, who were studied by PET/MRI. Time-activity curves were used to calculate residence times for each source organ. Absorbed doses to each organ and body effective doses were calculated using OLINDA/EXM 1.1 with both ICRP 60 and ICRP 103 tissue weighting factors. SUVmax and SUVpeak were calculated for volumes of interest (VOIs) in joints with suspected infection, the unaffected contralateral joint, blood pool, and soft tissue background. A two-tissue compartment model was used for kinetic modeling. RESULTS: D-11C-Met was well tolerated in all subjects. The tracer showed clearance from both urinary (rapid) and hepatobiliary (slow) pathways as well as low effective doses. Moreover, minimal background was observed in both organs with resident micro-flora and target organs, such as the spine and musculoskeletal system. Additionally, D-11C-Met showed increased focal uptake in areas of suspected infection, demonstrated by a significantly higher SUVmax and SUVpeak calculated from VOIs of joints with suspected infections compared to the contralateral joints, blood pool, and background (P < 0.01). Furthermore, higher distribution volume and binding potential were observed in suspected infections compared to the unaffected joints. CONCLUSION: D-11C-Met has a favorable radiation profile, minimal background uptake, and fast urinary extraction. Furthermore, D-11C-Met showed increased uptake in areas of suspected infection, making this a promising approach. Validation in larger clinical trials with a rigorous gold standard is still required.
Subject(s)
Methionine , Positron-Emission Tomography , Humans , Magnetic Resonance Imaging , Positron-Emission Tomography/methods , Radiometry , Tissue DistributionABSTRACT
BACKGROUND: Metastatic staging imaging is not recommended for asymptomatic patients with stage I-II breast cancer. Greater distant metastatic disease risk may warrant baseline imaging in patients with stage II-III with high-risk biologic subtypes. NCCN Guidelines recommend considering CT of the chest, abdomen, and pelvis (CT CAP) and bone scan in appropriate patients. CT CAP and bone scan are considered standard of care (SoC), although PET/CT is a patient-centered alternative. METHODS: Data were available for 799 high-risk patients with clinical stage II-III disease who initiated screening for the I-SPY2 trial at 4 institutions. A total of 564 complete records were reviewed to compare PET/CT versus SoC. Costs were determined from the payer perspective using the national 2018 Medicare Physician Fee Schedule and representative reimbursements to the University of California, San Francisco (UCSF). Incremental cost-effectiveness ratio (ICER) measured cost of using PET/CT per percent of patients who avoided a false-positive (FP). RESULTS: The de novo metastatic disease rate was 4.6%. Imaging varied across the 4 institutions (P<.0001). The FP rate was higher using SoC versus PET/CT (22.1% vs 11.1%; P=.0009). Mean time between incidental finding on baseline imaging to FP determination was 10.8 days. Mean time from diagnosis to chemotherapy initiation was 44.3 days with SoC versus 37.5 days with PET/CT (P=.0001). Mean cost per patient was $1,132 (SoC) versus $1,477 (PET/CT) using the Medicare Physician Fee Schedule, with an ICER of $31. Using representative reimbursements to UCSF, mean cost per patient was $1,236 (SoC) versus $1,073 (PET/CT) for Medicare, and $3,083 (SoC) versus $1,656 (PET/CT) for a private payer, with ICERs of -$15 and -$130, respectively. CONCLUSIONS: Considerable variation exists in metastatic staging practices. PET/CT reduced FP risk by half and decreased workup of incidental findings, allowing for earlier treatment start. PET/CT may be cost-effective, and at one institution was shown to be cost-saving. Better alignment is needed between hospital pricing strategies and payer coverage policies to deliver high-value care.
Subject(s)
Breast Neoplasms , Fluorodeoxyglucose F18 , Neoplasm Staging , Aged , Breast Neoplasms/diagnostic imaging , Female , Humans , Medicare , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Radiopharmaceuticals , United StatesABSTRACT
PURPOSE: Detection of bacteria-specific metabolism via positron emission tomography (PET) is an emerging strategy to image human pathogens, with dramatic implications for clinical practice. In silico and in vitro screening tools have recently been applied to this problem, with several monosaccharides including l-arabinose showing rapid accumulation in Escherichia coli and other organisms. Our goal for this study was to evaluate several synthetically viable arabinofuranose-derived 18 F analogs for their incorporation into pathogenic bacteria. PROCEDURES: We synthesized four radiolabeled arabinofuranose-derived sugars: 2-deoxy-2-[18 F]fluoro-arabinofuranoses (d-2-18 F-AF and l-2-18 F-AF) and 5-deoxy-5-[18 F]fluoro-arabinofuranoses (d-5-18 F-AF and l-5-18 F-AF). The arabinofuranoses were synthesized from 18 F- via triflated, peracetylated precursors analogous to the most common radiosynthesis of 2-deoxy-2-[18 F]fluoro-d-glucose ([18 F]FDG). These radiotracers were screened for their uptake into E. coli and Staphylococcus aureus. Subsequently, the sensitivity of d-2-18 F-AF and l-2-18 F-AF to key human pathogens was investigated in vitro. RESULTS: All 18 F radiotracer targets were synthesized in high radiochemical purity. In the screening study, d-2-18 F-AF and l-2-18 F-AF showed greater accumulation in E. coli than in S. aureus. When evaluated in a panel of pathologic microorganisms, both d-2-18 F-AF and l-2-18 F-AF demonstrated sensitivity to most gram-positive and gram-negative bacteria. CONCLUSIONS: Arabinofuranose-derived 18 F PET radiotracers can be synthesized with high radiochemical purity. Our study showed absence of bacterial accumulation for 5-substitued analogs, a finding that may have mechanistic implications for related tracers. Both d-2-18 F-AF and l-2-18 F-AF showed sensitivity to most gram-negative and gram-positive organisms. Future in vivo studies will evaluate the diagnostic accuracy of these radiotracers in animal models of infection.
Subject(s)
Arabinose/analogs & derivatives , Bacteria/isolation & purification , Positron-Emission Tomography/methods , Arabinose/chemistry , Humans , Radioactive Tracers , RadiochemistryABSTRACT
Purpose To develop and validate a deep learning algorithm that predicts the final diagnosis of Alzheimer disease (AD), mild cognitive impairment, or neither at fluorine 18 (18F) fluorodeoxyglucose (FDG) PET of the brain and compare its performance to that of radiologic readers. Materials and Methods Prospective 18F-FDG PET brain images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) (2109 imaging studies from 2005 to 2017, 1002 patients) and retrospective independent test set (40 imaging studies from 2006 to 2016, 40 patients) were collected. Final clinical diagnosis at follow-up was recorded. Convolutional neural network of InceptionV3 architecture was trained on 90% of ADNI data set and tested on the remaining 10%, as well as the independent test set, with performance compared to radiologic readers. Model was analyzed with sensitivity, specificity, receiver operating characteristic (ROC), saliency map, and t-distributed stochastic neighbor embedding. Results The algorithm achieved area under the ROC curve of 0.98 (95% confidence interval: 0.94, 1.00) when evaluated on predicting the final clinical diagnosis of AD in the independent test set (82% specificity at 100% sensitivity), an average of 75.8 months prior to the final diagnosis, which in ROC space outperformed reader performance (57% [four of seven] sensitivity, 91% [30 of 33] specificity; P < .05). Saliency map demonstrated attention to known areas of interest but with focus on the entire brain. Conclusion By using fluorine 18 fluorodeoxyglucose PET of the brain, a deep learning algorithm developed for early prediction of Alzheimer disease achieved 82% specificity at 100% sensitivity, an average of 75.8 months prior to the final diagnosis. © RSNA, 2018 Online supplemental material is available for this article. See also the editorial by Larvie in this issue.
Subject(s)
Alzheimer Disease/diagnostic imaging , Deep Learning , Image Interpretation, Computer-Assisted/methods , Positron-Emission Tomography/methods , Aged , Aged, 80 and over , Algorithms , Cognitive Dysfunction/diagnostic imaging , Female , Fluorodeoxyglucose F18/therapeutic use , Humans , Male , Middle Aged , Retrospective Studies , Sensitivity and SpecificityABSTRACT
PURPOSE: Rapid chemical exchange can affect SNR and pH measurement accuracy for hyperpolarized pH imaging with [13 C]bicarbonate. The purpose of this work was to investigate chemical exchange effects on hyperpolarized imaging sequences to identify optimal sequence parameters for high SNR and pH accuracy. METHODS: Simulations were performed under varying rates of bicarbonate-CO2 chemical exchange to analyze exchange effects on pH quantification accuracy and SNR under different sampling schemes. Four pulse sequences, including 1 new technique, a multiple-excitation 2D EPI (multi-EPI) sequence, were compared in phantoms using hyperpolarized [13 C]bicarbonate, varying parameters such as tip angles, repetition time, order of metabolite excitation, and refocusing pulse design. In vivo hyperpolarized bicarbonate-CO2 exchange measurements were made in transgenic murine prostate tumors to select in vivo imaging parameters. RESULTS: Modeling of bicarbonate-CO2 exchange identified a multiple-excitation scheme for increasing CO2 SNR by up to a factor of 2.7. When implemented in phantom imaging experiments, these sampling schemes were confirmed to yield high pH accuracy and SNR gains. Based on measured bicarbonate-CO2 exchange in vivo, a 47% CO2 SNR gain is predicted. CONCLUSION: The novel multi-EPI pulse sequence can boost CO2 imaging signal in hyperpolarized 13 C bicarbonate imaging while introducing minimal pH bias, helping to surmount a major hurdle in hyperpolarized pH imaging.
Subject(s)
Bicarbonates/chemistry , Hydrogen-Ion Concentration , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Animals , Male , Mice , Neoplasms, Experimental/diagnostic imaging , Phantoms, Imaging , Prostatic Neoplasms/diagnostic imaging , Signal-To-Noise RatioABSTRACT
Alterations in Zn2+ concentration are seen in normal tissues and in disease states, and for this reason imaging of Zn2+ is an area of active investigation. Herein, enriched [1-13 C]cysteine and [1-13 C2 ]iminodiacetic acid were developed as Zn2+ -specific imaging probes using hyperpolarized 13 C magnetic resonance spectroscopy. [1-13 C]cysteine was used to accurately quantify Zn2+ in complex biological mixtures. These sensors can be employed to detect Zn2+ via imaging mechanisms including changes in 13 C chemical shift, resonance linewidth, or T1 .
ABSTRACT
Boron neutron capture therapy (BNCT) is a therapeutic modality which has been used for the treatment of cancers, including brain and head and neck tumors. For effective treatment via BNCT, efficient and selective delivery of a high boron dose to cancer cells is needed. Prostate-specific membrane antigen (PSMA) is a target for prostate cancer imaging and drug delivery. In this study, we conjugated boronic acid or carborane functional groups to a well-established PSMA inhibitor scaffold to deliver boron to prostate cancer cells and prostate tumor xenograft models. Eight boron-containing PSMA inhibitors were synthesized. All of these compounds showed a strong binding affinity to PSMA in a competition radioligand binding assay (IC50 from 555.7 to 20.3 nM). Three selected compounds 1a, 1d, and 1f were administered to mice, and their in vivo blocking of 68Ga-PSMA-11 uptake was demonstrated through a positron emission tomography (PET) imaging and biodistribution experiment. Biodistribution analysis demonstrated boron uptake of 4-7 µg/g in 22Rv1 prostate xenograft tumors and similar tumor/muscle ratios compared to the ratio for the most commonly used BNCT compound, 4-borono-l-phenylalanine (BPA). Taken together, these data suggest a potential role for PSMA targeted BNCT agents in prostate cancer therapy following suitable optimization.
Subject(s)
Antigens, Surface/metabolism , Boron Neutron Capture Therapy/methods , Boronic Acids/chemistry , Boronic Acids/pharmacokinetics , Drug Delivery Systems/methods , Glutamate Carboxypeptidase II/antagonists & inhibitors , Glutamate Carboxypeptidase II/metabolism , Prostatic Neoplasms/radiotherapy , Animals , Boron Compounds/chemistry , Boron Compounds/pharmacokinetics , Cell Line, Tumor , Cell Survival/drug effects , Edetic Acid/analogs & derivatives , Edetic Acid/pharmacokinetics , Gallium Isotopes , Gallium Radioisotopes , Humans , Inhibitory Concentration 50 , Ligands , Male , Mice , Mice, Nude , Oligopeptides/pharmacokinetics , Phenylalanine/analogs & derivatives , Phenylalanine/chemistry , Phenylalanine/pharmacokinetics , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms/pathology , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacokinetics , Tissue Distribution , Xenograft Model Antitumor AssaysABSTRACT
OBJECTIVE. The purpose of this study was to determine the diagnostic accuracy of 68Ga-labeled prostate-specific membrane antigen 11 (PSMA-11) PET for disease detection in patients with prostate cancer who have biochemically recurrent disease after radiation therapy or prostatectomy. SUBJECTS AND METHODS. One hundred fifty patients underwent 68Ga-PSMA-11 PET/CT or PET/MRI, and the images were interpreted by two blinded board-certified radiologists. Each reader evaluated for the presence or absence of PSMA-positive disease within the prostate bed, pelvic lymph nodes, bones, and soft tissues (extrapelvic lymph nodes and visceral structures). The presence or absence of disease was confirmed by histopathologic analysis if available. For patients who did not have pathologic analysis, a composite of imaging and clinical follow-up was used as the reference standard. RESULTS. The median prostate-specific antigen level was 2.1 ng/mL. Forty-three patients had pathologic correlation, and for 29 patients a composite of imaging and follow-up was used to determine the presence or absence of disease. With substantial to almost perfect interreader reliability by region (κ = 0.78-0.87), 68Ga-PSMA-11 PET had high sensitivity per region (up to 100%) and per patient (up to 89.8%). It also had high positive predictive value per region (up to 100%) and per patient (up to 91.5%). Sensitivity was highest for bone metastases and lowest for soft-tissue metastases. Positive predictive value was highest for bone metastases and lowest for prostate bed recurrence. CONCLUSION. Gallium-68-labeled PSMA-11 PET is sensitive for prostate cancer metastases in patients with biochemically recurrent prostate cancer. It has high positive predictive value and substantial to almost perfect interrater reliability.
Subject(s)
Multimodal Imaging , Neoplasm Recurrence, Local/diagnostic imaging , Prostate-Specific Antigen/metabolism , Aged , Aged, 80 and over , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/secondary , Gallium Radioisotopes , Humans , Lymphatic Metastasis/diagnostic imaging , Male , Middle Aged , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/therapy , Prospective Studies , Prostatectomy , Radiopharmaceuticals , Radiotherapy , Soft Tissue Neoplasms/diagnostic imaging , Soft Tissue Neoplasms/secondaryABSTRACT
PURPOSE: To assess the utility of furosemide diuresis and the role of an improved scatter correction algorithm in reducing scatter artifact severity on Ga-68- Prostate-specific membrane antigen (PSMA)-11 positron emission tomography (PET). MATERIALS AND METHODS: A total of 139 patients underwent Ga-68-PSMA-11 PET imaging for prostate cancer: 47 non-time-of-flight (non-TOF) PET/computed tomography, 51 PET/magnetic resonance imaging (MRI) using the standard TOF scatter correction algorithm, and 41 PET/MRI using an improved TOF scatter correction algorithm. Whole-body PET acquisitions were subdivided into 3 regions: around kidneys; between kidneys and bladder; and around bladder. The images were reviewed, and scatter artifact severity was rated using a Likert-type scale. RESULTS: The worst scatter occurred when using non-TOF scatter correction without furosemide, where 42.1% of patients demonstrated severe scatter artifacts in 1 or more regions. Improved TOF scatter correction resulted in the smallest percentage of studies with severe scatter (6.5%). Scatter ratings by region were lowest using improved TOF scatter correction. Furosemide reduced mean scatter severity when using non-TOF and standard TOF. CONCLUSIONS: Both furosemide and scatter correction algorithm play a role in reducing scatter in PSMA PET. Improved TOF scatter correction resulted in the lowest scatter severity.
ABSTRACT
PURPOSE: The purpose of this study was to investigate the hyperpolarized ketone body 13 C-acetoacetate (AcAc) and its conversion to 13 C-ß-hydroxybutyrate (ßOHB) in vivo, catalyzed by ß-hydroxybutyrate dehydrogenase (BDH), as a novel direct marker of mitochondrial redox state. METHODS: [1,3-13 C2 ]AcAc was synthesized by hydrolysis of the ethyl ester, and hyperpolarized via dissolution DNP. Cold storage under basic conditions resulted in sufficient chemical stability for use in hyperpolarized (HP) MRI studies. Polarizations and relaxation times of HP [1,3-13 C2 ]AcAc were measured in a clinical 3T MRI scanner, and 8 rats were scanned by dynamic HP 13 C MR spectroscopy of a slab through the kidneys. Four rats were scanned after acute treatment with high dose metformin (125 mg/kg, intravenous), which is known to modulate mitochondrial redox via inhibition of mitochondrial complex I. An additional metformin-treated rat was scanned by abdominal 2D CSI (8 mm × 8 mm). RESULTS: Polarizations of 7 ± 1% and 7 ± 3%, and T1 relaxation times of 58 ± 5 s and 52 ± 3 s, were attained at the C1 and C3 positions, respectively. Rapid conversion of HP AcAc to ßOHB was detected in rat kidney in vivo, via the C1 label. The product HP ßOHB was resolved from closely resonating acetate. Conversion to ßOHB was also detected via 2D CSI, in both kidney as well as liver regions. Metformin treatment resulted in a significant increase (40%, P = 0.01) of conversion of HP AcAc to ßOHB. CONCLUSION: Rapid conversion of HP AcAc to ßOHB was observed in rat kidney in vivo and is a promising new non-invasive marker of mitochondrial redox state. Magn Reson Med 79:1862-1869, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Subject(s)
3-Hydroxybutyric Acid/chemistry , Acetoacetates/chemistry , Carbon-13 Magnetic Resonance Spectroscopy/methods , Kidney/diagnostic imaging , Liver/diagnostic imaging , Mitochondria/metabolism , Animals , Carbon Isotopes/chemistry , Catalysis , Ketones/chemistry , Lactic Acid/chemistry , Magnetic Resonance Imaging , Metformin/chemistry , Oxidation-Reduction , Pyruvic Acid/chemistry , Rats , Rats, Sprague-DawleyABSTRACT
Recent technical advances in positron emission tomography/magnetic resonance imaging (PET/MRI) technology allow much improved time-of-flight (TOF) and regularized iterative PET reconstruction regularized iterative reconstruction (RIR) algorithms. We evaluated the effect of TOF and RIR on standardized uptake values (maximum and peak SUV [SUVmax and SUVpeak]) and their metabolic tumor volume dependencies and visual image quality for 18F-fluorocholine PET/MRI in patients with newly diagnosed prostate cancer. Fourteen patients were administered with 3 MBq/kg of 18F-fluorocholine and scanned dynamically for 30 minutes. Positron emission tomography images were divided to early and late time points (1-6 minutes summed and 7-30 minutes summed). The values of the different SUVs were documented for dominant PET-avid lesions, and metabolic tumor volume was estimated using a 50% isocontour and SUV threshold of 2.5. Image quality was assessed via visual acuity scoring (VAS). We found that incorporation of TOF or RIR increased lesion SUVs. The lesion to background ratio was not improved by TOF reconstruction, while RIR improved the lesion to background ratio significantly ( P < .05). The values of the different VAS were all significantly higher ( P < .05) for RIR images over TOF, RIR over non-TOF, and TOF over non-TOF. In conclusion, our data indicate that TOF or RIR should be incorporated into current protocols when available.
Subject(s)
Fluorodeoxyglucose F18/metabolism , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Radiopharmaceuticals/metabolism , Aged , Algorithms , Humans , Image Processing, Computer-Assisted/methods , Male , Middle Aged , Multimodal Imaging , Time FactorsABSTRACT
Solid tumors are hypoxic with altered metabolism, resulting in secretion of acids into the extracellular matrix and lower relative pH, a feature associated with local invasion and metastasis. Therapeutic and diagnostic agents responsive to this microenvironment may improve tumor-specific delivery. Therefore, we pursued a general strategy whereby caged small-molecule drugs or imaging agents liberate their parent compounds in regions of low interstitial pH. In this manuscript, we present a new acid-labile prodrug method based on the glycosylamine linkage, and its application to a class of positron emission tomography (PET) imaging tracers, termed [(18)F]FDG amines. [(18)F]FDG amines operate via a proposed two-step mechanism, in which an acid-labile precursor decomposes to form the common radiotracer 2-deoxy-2-[(18)F]fluoro-d-glucose, which is subsequently accumulated by glucose avid cells. The rate of decomposition of [(18)F]FDG amines is tunable in a systematic fashion, tracking the pKa of the parent amine. In vivo, a 4-phenylbenzylamine [(18)F]FDG amine congener showed greater relative accumulation in tumors over benign tissue, which could be attenuated upon tumor alkalinization using previously validated models, including sodium bicarbonate treatment, or overexpression of carbonic anhydrase. This new class of PET tracer represents a viable approach for imaging acidic interstitial pH with potential for clinical translation.
Subject(s)
Fluorodeoxyglucose F18/chemistry , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Tumor Microenvironment , Amines/chemistry , Animals , Cell Line, Tumor , Chemistry Techniques, Synthetic , Humans , Hydrogen-Ion Concentration , Male , Mice, Nude , Neoplasms, Experimental/diagnostic imaging , Oximes/chemistry , Prodrugs/chemistry , Radiochemistry/methods , Radiopharmaceuticals/chemical synthesis , Xenograft Model Antitumor AssaysABSTRACT
PURPOSE: To determine the ability of multiparametric MR imaging to predict disease progression in patients with prostate cancer managed by active surveillance. METHODS: Sixty-four men with biopsy-proven prostate cancer managed by active surveillance were included in this HIPPA compliant, IRB approved study. We reviewed baseline MR imaging scans for the presence of a suspicious findings on T2-weighted imaging, MR spectroscopic imaging (MRSI), and diffusion-weighted MR imaging (DWI). The Gleason grades at subsequent biopsy were recorded. A Cox proportional hazard model was used to determine the predictive value of MR imaging for Gleason grades, and the model performance was described using Harrell's C concordance statistic and 95% confidence intervals (CIs). RESULTS: The Cox model that incorporated T2-weighted MR imaging, DWI, and MRSI showed that only T2-weighted MR imaging and DWI are independent predictors of biopsy upgrade (T2; HR = 2.46; 95% CI 1.36-4.46; P = 0.003-diffusion; HR = 2.76; 95% CI 1.13-6.71; P = 0.03; c statistic = 67.7%; 95% CI 61.1-74.3). There was an increasing rate of Gleason score upgrade with a greater number of concordant findings on multiple MR sequences (HR = 2.49; 95% CI 1.72-3.62; P < 0.001). CONCLUSIONS: Abnormal results on multiparametric prostate MRI confer an increased risk for Gleason score upgrade at subsequent biopsy in men with localized prostate cancer managed by active surveillance. These results may be of help in appropriately selecting candidates for active surveillance.