Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Pediatr Hematol Oncol ; 43(8): e1201-e1204, 2021 11 01.
Article in English | MEDLINE | ID: mdl-33235140

ABSTRACT

Gliosarcoma is rare among pediatric patients and among individuals with Neurofibromatosis Type 1 (NF1). Here we compare 2 pediatric gliosarcoma patients, one of whom has NF1. We performed whole-exome sequencing, methylation, and copy number analysis on tumor and blood for both patients. Whole-exome sequencing showed higher mutational burden in the tumor of the patient without NF1. Copy number analysis showed differences in chromosomal losses/gains between the tumors. Neither tumor showed O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation. The NF1 patient survived without progression while the other expired. This is the first reported case of gliosarcoma in a child with NF1.


Subject(s)
DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Exome Sequencing/methods , Exome , Gliosarcoma/pathology , Mutation , Neurofibromatosis 1/pathology , Tumor Suppressor Proteins/genetics , Child , Female , Gliosarcoma/complications , Gliosarcoma/genetics , Humans , Male , Neurofibromatosis 1/complications , Neurofibromatosis 1/genetics , Prognosis , Promoter Regions, Genetic
2.
J Nutr ; 149(3): 381-397, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30801647

ABSTRACT

BACKGROUND: Human plasma and tissue lycopene concentrations are heterogeneous even when consuming controlled amounts of tomato or lycopene. OBJECTIVES: Our objective is to determine whether single nucleotide polymorphisms (SNPs) in or near known or putative carotenoid metabolism genes [ß-carotene 15,15' monooxygenase 1 (BCO1), scavenger receptor class B type 1 (SCARB1), ATP-binding cassette transporter subfamily A member 1 (ABCA1), microsomal triglyceride transfer protein (MTTP), apolipoprotein B-48, elongation of very long chain fatty acids protein 2 (ELOVL2), and ATP-binding cassette subfamily B member 1 (ABCB1), and an intergenic superoxide dismutase 2, mitochondrial-associated SNP] are predictive of plasma lycopene responses to steady state tomato juice consumption. METHODS: Secondary linear regression analyses of data from a dose-escalation study of prostate cancer patients [n = 47; mean ± SEM age: 60 ± 1 y; BMI (in kg/m2): 32 ± 1] consuming 0, 1, or 2 cans of tomato-soy juice/d (163 mL/can; 20.6 mg lycopene 1.2 mg ß-carotene/can) for 24 ± 0.7 d before prostatectomy were conducted to explore 11 SNP genotype effects on the change in plasma lycopene and plasma and prostate tissue concentrations of lycopene, ß-carotene, phytoene, and phytofluene. RESULTS: Two BCO1 SNP genotypes were significant predictors of the change in plasma lycopene, with SNP effects differing in magnitude and direction, depending on the level of juice intake (rs12934922 × diet group P = 0.02; rs6564851 × diet group P = 0.046). Further analyses suggested that plasma ß-carotene changes were predicted by BCO1 rs12934922 (P < 0.01), prostate lycopene by trending interaction and main effects of BCO1 SNPs (rs12934922 × diet group P = 0.09; rs12934922 P = 0.02; rs6564851 P = 0.053), and prostate ß-carotene by BCO1 SNP interaction and main effects (rs12934922 × diet group P = 0.01; rs12934922 P < 0.01; rs7501331 P = 0.02). CONCLUSIONS: In conclusion, SNPs in BCO1 and other genes may modulate human plasma and prostate tissue responses to dietary lycopene intake and warrant validation in larger, human controlled feeding intervention and cohort studies. Genetic variants related to carotenoid metabolism may partially explain heterogeneous human blood and tissue responses and may be critical covariates for population studies and clinical trials. This trial was registered at clinicaltrials.gov as NCT01009736.


Subject(s)
Lycopene/blood , Polymorphism, Single Nucleotide , Prostatic Neoplasms/diet therapy , Soybean Proteins , beta-Carotene 15,15'-Monooxygenase/genetics , Beverages/analysis , Carotenoids/blood , Genotype , Humans , Linkage Disequilibrium , Lycopene/metabolism , Solanum lycopersicum/metabolism , Male , Middle Aged , Prostatic Neoplasms/enzymology , beta Carotene/blood , beta-Carotene 15,15'-Monooxygenase/metabolism
3.
Int J Cancer ; 134(1): 244-8, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-23784969

ABSTRACT

More than 3.5 million nonmelanoma skin cancers were treated in 2006; of these 700,000 were cutaneous squamous cell carcinomas (cSCCs). Despite clear environmental causes for cSCC, studies also suggest genetic risk factors. A cSCC susceptibility locus, Skts5, was identified on mouse chromosome 12 by linkage analysis. The orthologous locus to Skts5 in humans maps to 7p21 and 7q31. These loci show copy number increases in ∼10% of cSCC tumors. Here, we show that an additional 15-22% of tumors exhibit copy-neutral loss of heterozygosity. Furthermore, our previous data identified microsatellite markers on 7p21 and 7q31 that demonstrate preferential allelic imbalance (PAI) in cSCC tumors. On the basis of these results, we hypothesized that the human orthologous locus to Skts5 would house a gene important in human cSCC development and that tumors would demonstrate allele-specific somatic alterations. To test this hypothesis, we performed quantitative genotyping of 108 single nucleotide polymorphisms (SNPs) mapping to candidate genes at human SKTS5 in paired normal and tumor DNAs. Nine SNPs in HDAC9 (rs801540, rs1178108, rs1178112, rs1726610, rs10243618, rs11764116, rs1178355, rs10269422 and rs12540872) showed PAI in tumors. These data suggest that HDAC9 variants may be selected for during cSCC tumorigenesis.


Subject(s)
Allelic Imbalance/genetics , Carcinoma, Squamous Cell/genetics , Histone Deacetylases/genetics , Repressor Proteins/genetics , Skin Neoplasms/genetics , Chromosome Mapping/methods , Genotype , Humans , Polymorphism, Single Nucleotide
4.
J Clin Oncol ; : JCO2302195, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833641

ABSTRACT

Mutations in isocitrate dehydrogenase (IDH) genes, an early step in the ontogeny of lower-grade gliomas, induce global epigenetic changes characterized by a hypermethylation phenotype and are critical to tumor classification, treatment decision making, and estimation of patient prognosis. The introduction of IDH inhibitors to block the oncogenic neomorphic function of the mutated protein has resulted in new therapeutic options for these patients. To appreciate the implications of these recent IDH inhibitor results, it is important to juxtapose historical outcomes with chemoradiotherapy. Herein, we rationally evaluate recent IDH inhibitor data within historical precedents to guide contemporary decisions regarding the role of observation, maximal safe resection, adjuvant therapies, and the import of patient and tumor variables. The biological underpinnings of the IDH pathway and the mechanisms, impact, and limitations of IDH inhibitors, the actual magnitude of tumor regression and patient benefit, and emergence of resistance pathways are presented to guide future trial development. Management in the current, molecularly defined era will require careful patient selection and risk factor assessment, followed by an open dialog about the results of studies such as INDIGO, as well as mature data from legacy trials, and a discussion about risk-versus-benefit for the choice of treatment, with multidisciplinary decision making as an absolute prerequisite.

5.
Adv Radiat Oncol ; 8(4): 101201, 2023.
Article in English | MEDLINE | ID: mdl-37008254

ABSTRACT

Purpose: Increasing evidence suggests that ultra-high-dose-rate (UHDR) radiation could result in similar tumor control as conventional (CONV) radiation therapy (RT) while reducing toxicity to surrounding healthy tissues. Considering that radiation toxicity to gonadal tissues can cause hormone disturbances and infertility in young patients with cancer, the purpose of this study was to assess the possible role of UHDR-RT in reducing toxicity to healthy gonads in mice compared with CONV-RT. Methods and Materials: Radiation was delivered to the abdomen or pelvis of female (8 or 16 Gy) and male (5 Gy) C57BL/6J mice, respectively, at conventional (∼0.4 Gy/s) or ultrahigh (>100 Gy/s) dose rates using an IntraOp Mobetron linear accelerator. Organ weights along with histopathology and immunostaining of irradiated gonads were used to compare toxicity between radiation modalities. Results: CONV-RT and UHDR-RT induced a similar decrease in uterine weights at both studied doses (∼50% of controls), which indicated similarly reduced ovarian follicular activity. Histologically, ovaries of CONV- and UHDR-irradiated mice exhibited a comparable lack of follicles. Weights of CONV- and UHDR-irradiated testes were reduced to ∼30% of controls, and the percentage of degenerate seminiferous tubules was also similar between radiation modalities (∼80% above controls). Pairwise comparisons of all quantitative data indicated statistical significance between irradiated (CONV or UHDR) and control groups (from P ≤ .01 to P ≤ .0001) but not between radiation modalities. Conclusions: The data presented here suggest that the short-term effects of UHDR-RT on the mouse gonads are comparable to those of CONV-RT.

6.
Sci Rep ; 13(1): 12424, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37528172

ABSTRACT

GBM (Glioblastoma) is the most lethal CNS (Central nervous system) tumor in adults, which inevitably develops resistance to standard treatments leading to recurrence and mortality. TRIB1 is a serine/threonine pseudokinase which functions as a scaffold platform that initiates degradation of its substrates like C/EBPα through the ubiquitin proteasome system and also activates MEK and Akt signaling. We found that increased TRIB1 gene expression associated with worse overall survival of GBM patients across multiple cohorts. Importantly, overexpression of TRIB1 decreased RT/TMZ (radiation therapy/temozolomide)-induced apoptosis in patient derived GBM cell lines in vitro. TRIB1 directly bound to MEK and Akt and increased ERK and Akt phosphorylation/activation. We also found that TRIB1 protein expression was maximal during G2/M transition of cell cycle in GBM cells. Furthermore, TRIB1 bound directly to HDAC1 and p53. Importantly, mice bearing TRIB1 overexpressing tumors had worse overall survival. Collectively, these data suggest that TRIB1 induces resistance of GBM cells to RT/TMZ treatments by activating the cell proliferation and survival pathways thus providing an opportunity for developing new targeted therapeutics.


Subject(s)
Brain Neoplasms , Glioblastoma , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Drug Resistance, Neoplasm/genetics , Temozolomide/pharmacology , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Apoptosis/genetics , Mitogen-Activated Protein Kinase Kinases , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology
7.
Cell Rep Med ; 4(6): 101082, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37343523

ABSTRACT

Genetic alterations help predict the clinical behavior of diffuse gliomas, but some variability remains uncorrelated. Here, we demonstrate that haploinsufficient deletions of chromatin-bound tumor suppressor NFKB inhibitor alpha (NFKBIA) display distinct patterns of occurrence in relation to other genetic markers and are disproportionately present at recurrence. NFKBIA haploinsufficiency is associated with unfavorable patient outcomes, independent of genetic and clinicopathologic predictors. NFKBIA deletions reshape the DNA and histone methylome antipodal to the IDH mutation and induce a transcriptome landscape partly reminiscent of H3K27M mutant pediatric gliomas. In IDH mutant gliomas, NFKBIA deletions are common in tumors with a clinical course similar to that of IDH wild-type tumors. An externally validated nomogram model for estimating individual patient survival in IDH mutant gliomas confirms that NFKBIA deletions predict comparatively brief survival. Thus, NFKBIA haploinsufficiency aligns with distinct epigenome changes, portends a poor prognosis, and should be incorporated into models predicting the disease fate of diffuse gliomas.


Subject(s)
Brain Neoplasms , Glioma , Child , Humans , Brain Neoplasms/genetics , Epigenome , Glioma/genetics , Glioma/pathology , Haploinsufficiency/genetics , Mutation/genetics , NF-KappaB Inhibitor alpha/genetics , Isocitrate Dehydrogenase
8.
Mol Cancer Res ; 19(1): 48-60, 2021 01.
Article in English | MEDLINE | ID: mdl-32973101

ABSTRACT

Rapid tumor growth, widespread brain-invasion, and therapeutic resistance critically contribute to glioblastoma (GBM) recurrence and dismal patient outcomes. Although GBM stem cells (GSC) are shown to play key roles in these processes, the molecular pathways governing the GSC phenotype (GBM-stemness) remain poorly defined. Here, we show that epigenetic silencing of miR-146a significantly correlated with worse patient outcome and importantly, miR-146a level was significantly lower in recurrent tumors compared with primary ones. Further, miR-146a overexpression significantly inhibited the proliferation and invasion of GBM patient-derived primary cells and increased their response to temozolomide (TMZ), both in vitro and in vivo. Mechanistically, miR-146a directly silenced POU3F2 and SMARCA5, two transcription factors that mutually regulated each other, significantly compromising GBM-stemness and increasing TMZ response. Collectively, our data show that miR-146a-POU3F2/SMARCA5 pathway plays a critical role in suppressing GBM-stemness and increasing TMZ-response, suggesting that POU3F2 and SMARCA5 may serve as novel therapeutic targets in GBM. IMPLICATIONS: miR-146a predicts favorable prognosis and the miR-146a-POU3F2/SMARCA5 pathway is important for the suppression of stemness in GBM.


Subject(s)
Brain Neoplasms/genetics , Glioblastoma/genetics , MicroRNAs/genetics , Animals , Apoptosis , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Glioblastoma/pathology , Humans , Mice , Mice, Nude , Signal Transduction , Transfection
9.
Article in English | MEDLINE | ID: mdl-34589661

ABSTRACT

PURPOSE: This study sought to determine the prognostic significance of the WHO-defined glioma molecular subgroups along with additional alterations, including MGMT promoter methylation and mutations in ATRX, CIC, FUBP1, TERT, and TP53, in NRG/RTOG 0424 using long-term follow-up data. METHODS: Mutations were determined using an Ion Torrent sequencing panel. 1p/19q co-deletion and MGMT promoter methylation were determined by Affymetrix OncoScan and Illumina 450K arrays. Progression-free survival (PFS) and overall survival (OS) were estimated using the Kaplan-Meier method and tested using the log-rank test. Hazard ratios were calculated using the Cox proportional hazard model. Multivariable analyses (MVAs) included patient pretreatment characteristics. RESULTS: We obtained complete molecular data to categorize 80/129 eligible patients within the WHO subgroups. Of these, 26 (32.5%) were IDHmutant/co-deleted, 28 (35%) were IDHmutant/non-co-deleted, and 26 (32.5%) were IDHwild-type. Upon single-marker MVA, both IDHmutant subgroups were associated with significantly better OS and PFS (P values < .001), compared with the IDHwild-type subgroup. MGMT promoter methylation was obtained on 76 patients, where 58 (76%) were methylated and 18 (24%) were unmethylated. Single-marker MVAs demonstrated that MGMT promoter methylation was statistically significant for OS (P value < .001) and PFS (P value = .003). In a multimarker MVA, one WHO subgroup comparison (IDHmutant/co-deleted v IDHwild-type) was significant for OS (P value = .045), whereas MGMT methylation did not retain significance. CONCLUSION: This study reports the long-term prognostic effect of the WHO molecular subgroups, MGMT promoter methylation, and other mutations in NRG/RTOG 0424. These results demonstrate that the WHO molecular classification and MGMT both serve as strong prognostic indicators, but that MGMT does not appear to add statistically significant prognostic value to the WHO subgrouping, above and beyond IDH and 1p/19q status.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/drug therapy , DNA Methylation/genetics , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Genomics , Glioma/drug therapy , Humans , RNA-Binding Proteins/genetics , Temozolomide/therapeutic use , Tumor Suppressor Proteins/genetics
10.
J Clin Oncol ; 38(29): 3407-3417, 2020 10 10.
Article in English | MEDLINE | ID: mdl-32706640

ABSTRACT

PURPOSE: NRG Oncology/RTOG 9802 (ClinicalTrials.gov Identifier: NCT00003375) is a practice-changing study for patients with WHO low-grade glioma (LGG, grade II), as it was the first to demonstrate a survival benefit of adjuvant chemoradiotherapy over radiotherapy. This post hoc study sought to determine the prognostic and predictive impact of the WHO-defined molecular subgroups and corresponding molecular alterations within NRG Oncology/RTOG 9802. METHODS: IDH1/2 mutations were determined by immunohistochemistry and/or deep sequencing. A custom Ion AmpliSeq panel was used for mutation analysis. 1p/19q codeletion and MGMT promoter methylation were determined by copy-number arrays and/or Illumina 450K array, respectively. Progression-free survival (PFS) and overall survival (OS) were estimated using the Kaplan-Meier method. Hazard ratios (HRs) were calculated using the Cox proportional hazard model and tested using the log-rank test. Multivariable analyses (MVAs) were performed incorporating treatment and common prognostic factors as covariates. RESULTS: Of the eligible patients successfully profiled for the WHO-defined molecular groups (n = 106/251), 26 (24%) were IDH-wild type, 43 (41%) were IDH-mutant/non-codeleted, and 37(35%) were IDH-mutant/codeleted. MVAs demonstrated that WHO subgroup was a significant predictor of PFS after adjustment for clinical variables and treatment. Notably, treatment with postradiation chemotherapy (PCV; procarbazine, lomustine (CCNU), and vincristine) was associated with longer PFS (HR, 0.32; P = .003; HR, 0.13; P < .001) and OS (HR, 0.38; P = .013; HR, 0.21; P = .029) in the IDH-mutant/non-codeleted and IDH-mutant/codeleted subgroups, respectively. In contrast, no significant difference in either PFS or OS was observed with the addition of PCV in the IDH-wild-type subgroup. CONCLUSION: This study is the first to report the predictive value of the WHO-defined diagnostic classification in a set of uniformly treated patients with LGG in a clinical trial. Importantly, this post hoc analysis supports the notion that patients with IDH-mutant high-risk LGG regardless of codeletion status receive benefit from the addition of PCV.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Glioma/genetics , Glioma/therapy , Isocitrate Dehydrogenase/genetics , Adult , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Clinical Trials, Phase III as Topic , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Female , Glioma/drug therapy , Glioma/radiotherapy , Humans , Immunohistochemistry , Lomustine/administration & dosage , Male , Middle Aged , Neoplasm Grading , Procarbazine/administration & dosage , Promoter Regions, Genetic , Proportional Hazards Models , Tumor Suppressor Proteins/genetics , Vincristine/administration & dosage
11.
Oncogene ; 38(16): 2923-2936, 2019 04.
Article in English | MEDLINE | ID: mdl-30559405

ABSTRACT

Glioblastomas (GBMs) are the most aggressive primary brain tumors, with an average survival of less than 15 months. Therefore, there is a critical need to develop novel therapeutic strategies for GBM. This study aimed to assess the prognostic value of miR-4516 and investigate its oncogenic functions and the underlying cellular and molecular mechanisms in GBM. To determine the correlation between miR-4516 expression and overall survival of patients with GBM, total RNAs were isolated from 268 FFPE tumor samples, miR expression was assayed (simultaneously) using the nCounter human miRNA v3a assay followed by univariable and multivariable survival analyses. Further, in vitro and in vivo studies were conducted to define the role of miR-4516 in GBM tumorigenesis and the underlying molecular mechanisms. Upon multivariable analysis, miR-4516 was correlated with poor prognosis in GBM patients (HR = 1.49, 95%CI: 1.12-1.99, P = 0.01). Interestingly, the significance of miR-4516 was retained including MGMT methylation status. Overexpression of miR-4516 significantly enhanced cell proliferation and invasion of GBM cells both in vitro and in vivo. While conducting downstream targeting studies, we found that the tumor-promoting function of miR-4516, in part, was mediated by direct targeting of PTPN14 (protein tyrosine phosphatase, non-receptor type 14) which, in turn, regulated the Hippo pathway in GBM. Taken together, our data suggest that miR-4516 represents an independent negative prognostic factor in GBM patients and acts as a novel oncogene in GBM, which regulates the PTPN14/Hippo pathway. Thus, this newly identified miR-4516 may serve as a new potential therapeutic target for GBM treatment.


Subject(s)
Brain Neoplasms/genetics , Glioblastoma/genetics , MicroRNAs/genetics , Oncogenes/genetics , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Brain Neoplasms/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Cell Proliferation/genetics , DNA Modification Methylases/genetics , Female , Glioblastoma/pathology , Humans , Male , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Prognosis , Protein Serine-Threonine Kinases/genetics , Signal Transduction/genetics
12.
BMC Genomics ; 9: 626, 2008 Dec 23.
Article in English | MEDLINE | ID: mdl-19105829

ABSTRACT

BACKGROUND: Mus spretus diverged from Mus musculus over one million years ago. These mice are genetically and phenotypically divergent. Despite the value of utilizing M. musculus and M. spretus for quantitative trait locus (QTL) mapping, relatively little genomic information on M. spretus exists, and most of the available sequence and polymorphic data is for one strain of M. spretus, Spret/Ei. In previous work, we mapped fifteen loci for skin cancer susceptibility using four different M. spretus by M. musculus F1 backcrosses. One locus, skin tumor susceptibility 5 (Skts5) on chromosome 12, shows strong linkage in one cross. RESULTS: To identify potential candidate genes for Skts5, we sequenced 65 named and unnamed genes and coding elements mapping to the peak linkage area in outbred spretus, Spret/EiJ, FVB/NJ, and NIH/Ola. We identified polymorphisms in 62 of 65 genes including 122 amino acid substitutions. To look for polymorphisms consistent with the linkage data, we sequenced exons with amino acid polymorphisms in two additional M. spretus strains and one additional M. musculus strain generating 40.1 kb of sequence data. Eight candidate variants were identified that fit with the linkage data. To determine the degree of variation across M. spretus, we conducted phylogenetic analyses. The relatedness of the M. spretus strains at this locus is consistent with the proximity of region of ascertainment of the ancestral mice. CONCLUSION: Our analyses suggest that, if Skts5 on chromosome 12 is representative of other regions in the genome, then published genomic data for Spret/EiJ are likely to be of high utility for genomic studies in other M. spretus strains.


Subject(s)
Genetic Linkage , Genetic Predisposition to Disease , Mice/genetics , Skin Neoplasms/genetics , Amino Acid Substitution , Animals , Chromosome Mapping , Evolution, Molecular , Genotype , Phylogeny , Polymorphism, Genetic , Sequence Alignment , Sequence Analysis, DNA , Species Specificity
13.
Oncotarget ; 9(98): 37097-37111, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30647847

ABSTRACT

The presence of an isocitrate dehydrogenase (IDH1/2) mutation in gliomas is associated with favorable outcomes compared to gliomas without the mutation (IDH1/2 wild-type, WT). The underlying biological mechanisms accounting for improved clinical outcomes in IDH1/2 mutant gliomas remain poorly understood, but may, in part, be due to the glioma CpG island methylator phenotype (G-CIMP) and epigenetic silencing of genes. We performed profiling of IDH1/2 WT versus IDH1/2 mutant Grade II and III gliomas and identified transgelin-2 (TAGLN2), an oncogene and actin-polymerizing protein, to be expressed at significantly higher levels in IDH1/2 WT gliomas compared to IDH1/2 mutant gliomas. This differential expression of TAGLN2 was primarily due to promoter hypermethylation in IDH1/2 mutant gliomas, suggesting involvement of TAGLN2 in the G-CIMP. Our results also suggest that TAGLN2 may be involved in progression due to higher expression in glioblastomas compared to IDH1/2 WT gliomas of lower grades. Furthermore, our results suggest that TAGLN2 functions as an oncogene by contributing to proliferation and invasion when overexpressed in IDH1/2 WT glioma cells. Taken together, this study demonstrates a possible link between increased TAGLN2 expression, invasion and poor patient outcomes in IDH1/2 WT gliomas and identifies TAGLN2 as a potential novel therapeutic target for IDH1/2 WT gliomas.

15.
PLoS One ; 10(3): e0118745, 2015.
Article in English | MEDLINE | ID: mdl-25760964

ABSTRACT

PURPOSE: To develop a microRNA (miRNA)-based predictive model for prostate cancer patients of 1) time to biochemical recurrence after radical prostatectomy and 2) biochemical recurrence after salvage radiation therapy following documented biochemical disease progression post-radical prostatectomy. METHODS: Forty three patients who had undergone salvage radiation therapy following biochemical failure after radical prostatectomy with greater than 4 years of follow-up data were identified. Formalin-fixed, paraffin-embedded tissue blocks were collected for all patients and total RNA was isolated from 1mm cores enriched for tumor (>70%). Eight hundred miRNAs were analyzed simultaneously using the nCounter human miRNA v2 assay (NanoString Technologies; Seattle, WA). Univariate and multivariate Cox proportion hazards regression models as well as receiver operating characteristics were used to identify statistically significant miRNAs that were predictive of biochemical recurrence. RESULTS: Eighty eight miRNAs were identified to be significantly (p<0.05) associated with biochemical failure post-prostatectomy by multivariate analysis and clustered into two groups that correlated with early (≤ 36 months) versus late recurrence (>36 months). Nine miRNAs were identified to be significantly (p<0.05) associated by multivariate analysis with biochemical failure after salvage radiation therapy. A new predictive model for biochemical recurrence after salvage radiation therapy was developed; this model consisted of miR-4516 and miR-601 together with, Gleason score, and lymph node status. The area under the ROC curve (AUC) was improved to 0.83 compared to that of 0.66 for Gleason score and lymph node status alone. CONCLUSION: miRNA signatures can distinguish patients who fail soon after radical prostatectomy versus late failures, giving insight into which patients may need adjuvant therapy. Notably, two novel miRNAs (miR-4516 and miR-601) were identified that significantly improve prediction of biochemical failure post-salvage radiation therapy compared to clinico-histopathological factors, supporting the use of miRNAs within clinically used predictive models. Both findings warrant further validation studies.


Subject(s)
Biomarkers, Tumor/metabolism , MicroRNAs/metabolism , Prostatic Neoplasms/metabolism , Aged , Area Under Curve , Disease Progression , Humans , Male , Middle Aged , Prostatectomy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , ROC Curve , Salvage Therapy , Treatment Failure
16.
PLoS One ; 8(3): e58609, 2013.
Article in English | MEDLINE | ID: mdl-23472213

ABSTRACT

Variants in regulatory regions are predicted to play an important role in disease susceptibility of common diseases. Polymorphisms mapping to microRNA (miRNA) binding sites have been shown to disrupt the ability of miRNAs to target genes resulting in differential mRNA and protein expression. Skin tumor susceptibility 5 (Skts5) was identified as a locus conferring susceptibility to chemically-induced skin cancer in NIH/Ola by SPRET/Outbred F1 backcrosses. To determine if polymorphisms between the strains which mapped to putative miRNA binding sites in the 3' untranslated region (3'UTR) of genes at Skts5 influenced expression, we conducted a systematic evaluation of 3'UTRs of candidate genes across this locus. Nine genes had polymorphisms in their 3'UTRs which fit the linkage data and eight of these contained polymorphisms suspected to interfere with or introduce miRNA binding. 3'UTRs of six genes, Bcap29, Dgkb, Hbp1, Pik3cg, Twistnb, and Tspan13 differentially affected luciferase expression, but did not appear to be differentially regulated by the evaluated miRNAs predicted to bind to only one of the two isoforms. 3'UTRs from four additional genes chosen from the locus that fit less stringent criteria were evaluated. Ifrd1 and Etv1 showed differences and contained polymorphisms predicted to disrupt or create miRNA binding sites but showed no difference in regulation by the miRNAs tested. In summary, multiple 3'UTRs with putative functional variants between susceptible and resistant strains of mice influenced differential expression independent of predicted miRNA binding.


Subject(s)
3' Untranslated Regions , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Neoplasms/genetics , Animals , Binding Sites , Cell Line , Crosses, Genetic , Genotype , Mice , MicroRNAs/metabolism , Mutagenesis, Site-Directed , Neoplasms/metabolism , Oncogenes/genetics , Polymorphism, Genetic , RNA, Messenger/metabolism , Species Specificity
17.
PeerJ ; 1: e68, 2013.
Article in English | MEDLINE | ID: mdl-23646287

ABSTRACT

Mus spretus mice are highly resistant to several types of cancer compared to Mus musculus mice. To determine whether differences in microRNA (miRNA) expression account for some of the differences in observed skin cancer susceptibility between the strains, we performed miRNA expression profiling of skin RNA for over 300 miRNAs. Five miRNAs, miR-1, miR-124a-3, miR-133a, miR-134, miR-206, were differentially expressed by array and/or qPCR. miR-1 was previously shown to have tumor suppressing abilities in multiple tumor types. We found miR-1 expression to be lower in mouse cutaneous squamous cell carcinomas (cSCCs) compared to normal skin. Based on the literature and our expression data, we performed detailed studies on predicted miR-1 targets and evaluated the effect of miR-1 expression on two murine cSCC cell lines, A5 and B9. Following transfection of miR-1, we found decreased mRNA expression of three validated miR-1 targets, Met, Twf1 and Ets1 and one novel target Bag4. Decreased expression of Ets1 was confirmed by Western analysis and by 3' reporter luciferase assays containing wildtype and mutated Ets1 3'UTR. We evaluated the effect of miR-1 on multiple tumor phenotypes including apoptosis, proliferation, cell cycle and migration. In A5 cells, expression of miR-1 led to decreased proliferation compared to a control miR. miR-1 expression also led to increased apoptosis at later time points (72 and 96 h) and to a decrease in cells in S-phase. In summary, we identified five miRNAs with differential expression between cancer resistant and cancer susceptible mice and found that miR-1, a candidate tumor suppressor, has targets with defined roles in tumorigenesis.

18.
Curr Alzheimer Res ; 9(9): 1077-96, 2012 Nov.
Article in English | MEDLINE | ID: mdl-21605062

ABSTRACT

Alzheimer's disease (AD) is a common, progressive neurodegenerative disorder without highly effective therapies. The etiology of AD is heterogeneous with amyloid-beta plaques, neurofibrillary tangles, oxidative stress, and aberrant DNA methylation all implicated in the disease pathogenesis. DNA methylation is a well-established process for regulating gene expression and has been found to regulate a growing number of important genes involved in AD development and progression. Additionally, aberrations in one-carbon metabolism are a common finding in AD patients with individuals exhibiting low S-adenosylmethionine and high homocysteine levels as well as low folate and vitamin B. Oxidative stress is considered one of the earliest events in AD pathogenesis and is thought to contribute largely to neuronal cell death. Emerging evidence suggests an interaction exists between oxidative stress and DNA methylation; however, the mechanism(s) remain unclear. This review summarizes known and potential genes implicated in AD that are regulated by DNA methylation and oxidative stress. We also highlight the evidence for the role of oxidative damage contributing to DNA hypomethylation in AD patients through several mechanisms as well as implications for disease understanding and therapeutic development.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Oxidative Stress/genetics , Humans
19.
Cancer Res ; 68(22): 9116-21, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-19010880

ABSTRACT

Epigenetic alterations of the genome such as DNA promoter methylation and chromatin remodeling play an important role in tumorigenesis. These modifications take place throughout development with subsequent events occurring later in adulthood. Recent studies, however, suggest that some epigenetic alterations that influence cancer risk are inherited through the germline from parent to child and are observed in multiple generations. Epigenetic changes may be inherited as Mendelian, non-Mendelian, or environmentally induced traits. Here, we will discuss Mendelian, non-Mendelian, and environmentally induced patterns of multigenerational epigenetic alterations as well as some possible mechanisms for how these events may be occurring.


Subject(s)
Epigenesis, Genetic , Mutation , Neoplasms/genetics , Adaptor Proteins, Signal Transducing/genetics , CpG Islands , DNA Methylation , Diethylstilbestrol/toxicity , Environment , Homeodomain Proteins/physiology , Humans , MutL Protein Homolog 1 , Nuclear Proteins/genetics , Parents , Tumor Suppressor Proteins/physiology , X Chromosome Inactivation
SELECTION OF CITATIONS
SEARCH DETAIL