ABSTRACT
Soil improvement measures need to be ecologically credible, socially acceptable and economically affordable if they are to enter widespread use. However, in real world decision contexts not all measures can sufficiently meet these criteria. As such, developing, selecting and using appropriate tools to support more systematic appraisal of soil improvement measures in different decision-making contexts represents an important challenge. Tools differ in their aims, ranging from those focused on appraising issues of cost-effectiveness, wider ecosystem services impacts and adoption barriers/opportunities, to those seeking to foster participatory engagement and social learning. Despite the growing complexity of the decision-support tool landscape, comprehensive guidance for selecting tools that are best suited to appraise soil improvement measures, as well as those well-adapted to enable participatory deployment, has generally been lacking. We address this gap using the experience and survey data from an EU-funded project (RECARE: Preventing and REmediating degradation of soils in Europe through land CARE). RECARE applied different socio-cultural, biophysical and monetary appraisal tools to assess the costs, benefits and adoption of soil improvement measures across Europe. We focused on these appraisal tools and evaluated their performance against three broad attributes that gauge their differences and suitability for widespread deployment to aid stakeholder decision making in soil management. Data were collected using an online questionnaire administered to RECARE researchers. Although some tools worked better than others across case studies, the information collated was used to provide guiding strategies for choosing appropriate tools, considering resources and data availability, characterisation of uncertainty, and the purpose for which a specific soil improvement measure is being developed or promoted. This paper provides insights to others working in practical soil improvement contexts as to why getting the tools right matters. It demonstrates how use of the right tools can add value to decision-making in ameliorating soil threats, supporting the sustainable management of the services that our soil ecosystems provide.
Subject(s)
Ecosystem , Soil , Decision Making , Europe , Problem SolvingABSTRACT
Farmers possess a wealth of knowledge regarding soil erosion and soil and water conservation (SWC), and there is a great demand to access it. However, there has been little effort to systematically document farmers' experiences and perceptions of SWC measures. Sustainable Land Management (SLM) has largely evolved through local traditional practices rather than adoption based on scientific evidence. This research aimed to assess soil erosion and performance of different SWC measures from the farmers' perspective by documenting their perceptions and experiences in Koga catchment, Ethiopia. To this aim, workshops were organised in three sub-catchments differing in slopes and SWC measures. Workshops included group discussions and field monitoring of erosion indicators and systematically describing the status of soil erosion, soil fertility and yield to assess the performance of SWC measures. Results show that farmers are aware of the harmful effects of ongoing soil erosion and of the impacts of mitigation measures on their farms. Sheet erosion was found to be the most widespread form of erosion while rill damage was critical on plots cultivated to cereals on steep slopes. The average rill erosion rates were 24.2 and 47.3 t/ha/y in treated and untreated farmlands, respectively. SWC reduced rill erosion on average by more than 48%. However, the impacts of SWC measures varied significantly between sub-watersheds, and farmers believed that SWC measures did not prevent erosion completely. Comparatively, graded stone-faced soil bunds revealed maximum desired impacts and were most appreciated by farmers, whereas level bunds caused water logging. Most traditional ditches were highly graded and begun incising and affected production of cereals. Despite the semi-quantitative nature of the methodology, using farmers' perceptions and experiences to document land degradation and the impacts of SWC measures is crucial as they are the daily users of the land and therefore directly affecting the success or failure of SWC measures.
Subject(s)
Conservation of Natural Resources , Soil , Agriculture , Ethiopia , Water SupplyABSTRACT
Targeting agri-environmental measures (AEM) improves their effectiveness in the delivery of public goods, provided the necessary coordination with other incentives. In less favoured areas (LFA) measures focusing on the conservation of extensive farming contribute to sustainable land management in these areas. In this paper we investigate the implementation of a possible AEM supporting the improvement of permanent pastures coordinated with the extensive livestock and single farm payments actually in place. Through applying a spatially-explicit mixed integer optimisation model we simulate future land use scenarios for two less favoured areas in Portugal (Centro and Alentejo) considering two policy scenarios: a 'targeted AEM', and a 'non-targeted AEM'. We then compare the results with a 'basic policy' option (reflecting a situation without AEM). This is done with regard to landscape-scale effects on the reduction of fire hazard and erosion risk, as well as effects on farm income. The results show that an AEM for permanent pastures would be more cost-effective for erosion and fire hazard mitigation if implemented within a spatially targeted framework. However when cost-effectiveness is assessed with other indicators (e.g. net farm income and share of grazing livestock) 'non-targeted AEM' implementation delivers the best outcome in Alentejo. In Centro the implementation of an AEM involves important losses of income compared to the 'basic policy'. 'Targeted AEM' tends to favour farms in very marginal conditions, i.e. targeting is demonstrated to perform best in landscapes where spatial heterogeneity is higher. The results also show the risk of farm abandonment in the two studied less favoured areas: in all three scenarios more than 30% of arable land is deemed to be abandoned.
Subject(s)
Agriculture , Conservation of Natural Resources/methods , Environmental Policy , Agriculture/methods , Animals , Conservation of Natural Resources/economics , Cost-Benefit Analysis , Environment , Farms , Livestock , Models, Theoretical , PortugalABSTRACT
Afforestation is a promising nature-based climate solution for mitigating climate change, but it is subject to a complex web of biophysical, cost-benefit, market, and policy processes. Although its biophysical feasibility has been established, the cost, market, and policy constraints that affect climate change mitigation through afforestation are still unclear. Here, we estimate such cost, market, and policy constraints on the basis of biophysical feasibility. Our findings reveal that implementation costs are a more relevant constraint than opportunity costs on mitigating climate change through afforestation. The China Certified Emission Reduction market currently provides only a 0.308 % incentive for climate change mitigation through afforestation, due to market access constraints. The current market prices of China Certified Emission Reduction, China Carbon Emissions Trading Exchange, and Nature Based Carbon Offset in Voluntary Carbon Market constrain 88.15 %, 87.95 %, and 85.75 % of CO2 removal actions through afforestation, compared to the carbon price scenario (US$62.97 tCO2-1) of the EU Emissions Trading System. Moreover, land policy under the scenarios of prohibiting conversion of cultivated land to forest and forest restoration in degraded areas exhibit 8.87-29.59 % and 65.16-74.10 % constraints, respectively, on mitigating climate change through afforestation compared to land-use freedom conversion scenarios from 2020 to 2060. Thus, enhancing the incentive price of CO2 removal, addressing the market access barrier, strengthening cooperation between global carbon markets, and exploring carbon-neutral and food multi-oriented land policies can be valuable sources of mitigation efforts over the next 40 years.
Subject(s)
Climate Change , Conservation of Natural Resources , China , Forests , Environmental Policy , Forestry , Carbon Dioxide/analysisABSTRACT
The recently released Farm to Fork Strategy of the European Union sets, for the first time, pesticide reduction goals at the EU level: 50% reduction in overall use and risk of chemical pesticides and a 50% use reduction of more hazardous pesticides. However, there is little guidance provided as to how to achieve these targets. In this study, we compiled the characteristics of all 230 EU-approved, synthetic, open-field use active substances (AS) used as herbicides, fungicides and insecticides, and explored the potential of seven Farm to Fork-inspired pesticide use reduction scenarios to achieve the 50% reduction goals. The pesticide reduction scenarios were based on recommended AS application rates, pesticide type, soil persistence, presence on the candidate for substitution list, and hazard to humans and ecosystems. All 230 AS have been found to cause negative effects on humans or ecosystems depending on exposure levels. This is found despite the incomplete hazard profiles of several AS. 'No data available' situations are often observed for the same endpoints and specific organisms. The results of the scenarios indicate that only severe pesticide use restrictions, such as allowing only low-hazard substances, will result in the targeted 50% use and risk reductions. Over half of the 230 AS considered are top use or top hazard substances, however, the reduction actions depend on the still to be defined EC priority areas and action plans, also for other recent and related strategies. Broader scenario implications (on productivity, biodiversity or economy) and the response of farmers to the pesticide use restrictions should be explored in those plans to define effective actions. Our results emphasize the need for a re-evaluation of the approved AS and of their representative uses, and the call for open access to AS, crop and region-specific use data to refine scenarios and assess effective reductions.
Subject(s)
Pesticides , Agriculture/methods , Ecosystem , Farms , Goals , Hazardous Substances , HumansABSTRACT
This research used a qualitative and quantitative approach to classify factors influencing wheat farmers' social, economic, and environmental vulnerability in Khorasan Razavi province, Iran, from the perspective of elite wheat farmers and agricultural specialists, and then to establish some recommendations based on the results. To achieve the study objectives, in the qualitative part, in-depth interviews were held with 20 agricultural specialists in the field of wheat cultivation, and 9 elite wheat farmers were selected using a purposive sampling method. Using stratified random sampling, 391 wheat farmers participated in the quantitative part. From the agricultural specialists' viewpoint, the prime factor affecting vulnerability was the social factor "farm management". The second factor was the environmental vulnerability factor "Sunn pest and heat", and the final factor was the economic vulnerability factor "the costs of fertilizer, equipment, and machines and their maintenance". In contrast, from the viewpoint of elite wheat farmers, the dominant factor affecting vulnerability was the economic factor "the costs of equipment, fertilizer, and machines and their maintenance". Regarding social vulnerability, "Governmental support" was stressed and the most important environmental vulnerability factor was "Sunn pest and cold". The results of confirmatory factor analysis were more in line with the views of agricultural specialists. According to the results, it is suggested that the agricultural extension system provides timely training to farmers in order to properly manage farms in times of crisis. The government should also compensate part of the costs of social and economic damage to farmers by providing free or low-interest loans.
Subject(s)
Farmers , Triticum , Agriculture , Climate Change , Humans , IranABSTRACT
Land use and climate change are recognized as two major drivers affecting surface streamflow. On the Chinese Loess Plateau, implementation of several land restoration projects has changed land cover in recent decades. The main objectives of this study were to understand how streamflow evolved on the Loess Plateau and how land use and climate change have contributed to this change. In this study, we selected 22 hydrological modelling studies covering 25 different watersheds in the Loess Plateau and we performed a meta-analysis by using the hydrological and meteorological data collected from these studies. The results indicate a streamflow decrease in 41 of a total of 52 case studies whereas precipitation change was found to be non-significant in the majority of the cases. Streamflow reduction was estimated to be -0.46â¯mm/year by meta-analysis across all case studies. Land use change was estimated to have 63.52% impact on the streamflow reduction whereas climate change accounted for 36.48% of the impact. Using meta-regression, an increasing soil and water conservation area was found to be positively correlated to streamflow reduction. We conclude that in the Chinese Loess Plateau, streamflow shows a decreasing trend and land restoration is the major cause of this reduction. To the knowledge of the authors, this is the first study that estimates streamflow dynamics across many watersheds on the entire Loess Plateau.
ABSTRACT
In this paper we present a novel methodology for identifying stakeholders for the purpose of engaging with them in transdisciplinary, sustainability research projects. In transdisciplinary research, it is important to identify a range of stakeholders prior to the problem-focussed stages of research. Early engagement with diverse stakeholders creates space for them to influence the research process, including problem definition, from the start. However, current stakeholder analysis approaches ignore this initial identification process, or position it within the subsequent content-focussed stages of research. Our methodology was designed as part of a research project into a range of soil threats in seventeen case study locations throughout Europe. Our methodology was designed to be systematic across all sites. It is based on a snowball sampling approach that can be implemented by researchers with no prior experience of stakeholder research, and without requiring significant financial or time resources. It therefore fosters transdisciplinarity by empowering physical scientists to identify stakeholders and understand their roles. We describe the design process and outcomes, and consider their applicability to other research projects. Our methodology therefore consists of a two-phase process of design and implementation of an identification questionnaire. By explicitly including a design phase into the process, it is possible to tailor our methodology to other research projects.
ABSTRACT
Policy plays a very important role in natural resource management as it lays out a government framework for guiding long-term decisions, and evolves in light of the interactions between human and environment. This paper focuses on soil and water conservation (SWC) policy in the Yellow River Basin (YRB), China. The problems, rural poverty, severe soil erosion, great sediment loads and high flood risks, are analyzed over the period of 1949-present using the Driving force-Pressure-State-Impact-Response (DPSIR) framework as a way to organize analysis of the evolution of SWC policy. Three stages are identified in which SWC policy interacts differently with institutional, financial and technology support. In Stage 1 (1949-1979), SWC policy focused on rural development in eroded areas and on reducing sediment loads. Local farmers were mainly responsible for SWC. The aim of Stage 2 (1980-1990) was the overall development of rural industry and SWC. A more integrated management perspective was implemented taking a small watershed as a geographic interactional unit. This approach greatly improved the efficiency of SWC activities. In Stage 3 (1991 till now), SWC has been treated as the main measure for natural resource conservation, environmental protection, disaster mitigation and agriculture development. Prevention of new degradation became a priority. The government began to be responsible for SWC, using administrative, legal and financial approaches and various technologies that made large-scale SWC engineering possible. Over the historical period considered, with the implementation of the various SWC policies, the rural economic and ecological system improved continuously while the sediment load and flood risk decreased dramatically. The findings assist in providing a historical perspective that could inform more rational, scientific and effective natural resource management going forward.
Subject(s)
Conservation of Natural Resources/methods , Environmental Policy , Rivers , Soil , Agriculture/statistics & numerical data , China , Environment , Humans , Industry/statistics & numerical data , Water Supply/statistics & numerical dataABSTRACT
In Suriname, the Maroons have practiced shifting cultivation for generations, but now the increasing influence of modern society is causing a trend of decreasing fallow periods with potentially adverse effects for the vulnerable tropical soils. Adoption of appropriate soil fertility management (SFM) practices is currently slow. Combining methods from cultural ecology and environmental psychology, this study identifies two groups with divergent behavioral intentions which we term semi-permanent cultivators and shifting cultivators. Semi-permanent cultivators intend to practice more permanent agriculture and experiment individually with plot-level SFM. Shifting cultivators rely on traditional knowledge that is not adequate for their reduced fallow periods, but perceive constraints that prevent them practicing more permanent agriculture. Semi-permanent cultivators act as a strong reference group setting a subjective norm, yet feel no need to exchange knowledge with shifting cultivators who are in danger of feeling marginalized. Drawing on a political ecology perspective, we conclude that cultural ecological knowledge declined due to negative perceptions of external actors setting a strong subjective norm. Semi-permanent cultivators who wish to enter the market economy are most likely to adopt SFM. We conclude that any future SFM intervention must be based on an in-depth understanding of each group's behavior, in order to avoid exacerbating processes of marginalization.
ABSTRACT
Traditional olive orchards account for a large share of the area under olives in the EU, particularly in marginal areas, like those analysed in the OLIVERO project. In general, traditional olive growing can be described as a low-intensity production system, associated with old (sometimes very old) trees, grown at a low density, giving small yields and receiving low inputs of labour and materials. Though such systems are environmentally sustainable, their economic viability has become an issue, since EU policies favour more intensive and competitive systems. Orchards that have not been intensified seem to be threatened by the recent reform of the EU olive and olive oil policy, as income support has been decoupled from production. The main purpose of this paper is to identify the present constraints to traditional olive growing, and to recommend some private and public interventions to prevent its abandonment. During the OLIVERO project, traditional olive production systems were identified and described in five target areas (Trás-os-Montes--Portugal, Cordoba and Granada/Jaen--Spain, Basilicata/Salerno--Italy, and West Crete--Greece). The causes and consequences of abandonment are discussed, based on the analysis of the costs and returns, which revealed that these systems are barely economically sustainable. Their viability is only assured if reduced opportunity costs for family labour are accepted, and the olive growing is part-time. Based on these results, recommendations are made to prevent the abandonment of traditional olive growing and to preserve its environmental benefits.
Subject(s)
Agriculture/economics , Conservation of Natural Resources , Olea/growth & development , Agriculture/methods , Altitude , Cost-Benefit Analysis , Costs and Cost Analysis , Decision Making , Ecosystem , Humans , Mediterranean Region , Policy Making , Socioeconomic Factors , Water Supply/economics , WorkforceABSTRACT
The ultimate objective of the EU Olivero project was to improve the quality of life of the rural population and to assure the sustainable use of the natural resources of land and water in the sloping and mountainous olive production systems (SMOPS) areas in Southern Europe. One specific objective was to develop, with end-users, alternative future scenarios for olive orchards in the five Olivero target areas. This paper discusses the development of these scenarios, and their socio-economic and environmental effects. After presenting the different production systems (SMOPS) and their strengths, weaknesses, opportunities and threats, a general overview is given of the medium- and long-term prospects. These have been validated by experts from the olive sector and foresee changes towards abandonment, intensification and organic production. On balance, the changes could lead to lower production of some target areas in future. An analysis of major external factors affecting the future development of SMOPS indicates there will be labour shortages and increased wage rates, reduced subsidies and constant or rising olive oil prices. On the basis of these assumptions, four future scenarios are developed for the five target areas, with the help of a Linear Programming simulation model. The results are presented for two target areas. For the Trás-os-Montes target area in Portugal, three of the four tested scenarios point to a high level of abandonment, while in the most positive scenario the areas under semi-intensive low input and organic SMOPS increase. In the Granada and Jaen target area in Spain, all scenarios hint at intensification, and only the orchards on the steepest slopes are likely to be abandoned. The direction and extent of environmental effects (erosion, fire risk, pollution, water use and biodiversity) differ per scenario, as do the extent of cross-compliance and agri-environmental measures.