Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
2.
Cell ; 158(1): 185-197, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24954535

ABSTRACT

Activating mutations in KRAS are among the most frequent events in diverse human carcinomas and are particularly prominent in human pancreatic ductal adenocarcinoma (PDAC). An inducible Kras(G12D)-driven mouse model of PDAC has established a critical role for sustained Kras(G12D) expression in tumor maintenance, providing a model to determine the potential for and the underlying mechanisms of Kras(G12D)-independent PDAC recurrence. Here, we show that some tumors undergo spontaneous relapse and are devoid of Kras(G12D) expression and downstream canonical MAPK signaling and instead acquire amplification and overexpression of the transcriptional coactivator Yap1. Functional studies established the role of Yap1 and the transcriptional factor Tead2 in driving Kras(G12D)-independent tumor maintenance. The Yap1/Tead2 complex acts cooperatively with E2F transcription factors to activate a cell cycle and DNA replication program. Our studies, along with corroborating evidence from human PDAC models, portend a novel mechanism of escape from oncogenic Kras addiction in PDAC.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adenocarcinoma/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Phosphoproteins/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Adenocarcinoma/pathology , Animals , Carcinoma, Pancreatic Ductal/pathology , Cell Cycle , Cell Cycle Proteins , Cell Line, Tumor , DNA Replication , DNA-Binding Proteins/metabolism , Disease Models, Animal , E2F Transcription Factors/metabolism , Humans , Mice , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins/metabolism , TEA Domain Transcription Factors , Transcription Factors/metabolism , YAP-Signaling Proteins , ras Proteins/metabolism
3.
Cell ; 149(3): 656-70, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22541435

ABSTRACT

Tumor maintenance relies on continued activity of driver oncogenes, although their rate-limiting role is highly context dependent. Oncogenic Kras mutation is the signature event in pancreatic ductal adenocarcinoma (PDAC), serving a critical role in tumor initiation. Here, an inducible Kras(G12D)-driven PDAC mouse model establishes that advanced PDAC remains strictly dependent on Kras(G12D) expression. Transcriptome and metabolomic analyses indicate that Kras(G12D) serves a vital role in controlling tumor metabolism through stimulation of glucose uptake and channeling of glucose intermediates into the hexosamine biosynthesis and pentose phosphate pathways (PPP). These studies also reveal that oncogenic Kras promotes ribose biogenesis. Unlike canonical models, we demonstrate that Kras(G12D) drives glycolysis intermediates into the nonoxidative PPP, thereby decoupling ribose biogenesis from NADP/NADPH-mediated redox control. Together, this work provides in vivo mechanistic insights into how oncogenic Kras promotes metabolic reprogramming in native tumors and illuminates potential metabolic targets that can be exploited for therapeutic benefit in PDAC.


Subject(s)
Adenocarcinoma/metabolism , Disease Models, Animal , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Animals , Humans , Mice , Proto-Oncogene Proteins p21(ras)/genetics , Transcription, Genetic
4.
Nature ; 488(7411): 337-42, 2012 Aug 16.
Article in English | MEDLINE | ID: mdl-22895339

ABSTRACT

Inactivation of tumour-suppressor genes by homozygous deletion is a prototypic event in the cancer genome, yet such deletions often encompass neighbouring genes. We propose that homozygous deletions in such passenger genes can expose cancer-specific therapeutic vulnerabilities when the collaterally deleted gene is a member of a functionally redundant family of genes carrying out an essential function. The glycolytic gene enolase 1 (ENO1) in the 1p36 locus is deleted in glioblastoma (GBM), which is tolerated by the expression of ENO2. Here we show that short-hairpin-RNA-mediated silencing of ENO2 selectively inhibits growth, survival and the tumorigenic potential of ENO1-deleted GBM cells, and that the enolase inhibitor phosphonoacetohydroxamate is selectively toxic to ENO1-deleted GBM cells relative to ENO1-intact GBM cells or normal astrocytes. The principle of collateral vulnerability should be applicable to other passenger-deleted genes encoding functionally redundant essential activities and provide an effective treatment strategy for cancers containing such genomic events.


Subject(s)
Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Genes, Essential/genetics , Glioblastoma/drug therapy , Glioblastoma/genetics , Molecular Targeted Therapy/methods , Sequence Deletion/genetics , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/deficiency , Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Chromosomes, Human, Pair 1/genetics , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Enzyme Inhibitors , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Genes, Tumor Suppressor , Glioblastoma/pathology , Homozygote , Humans , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Mice , Neoplasm Transplantation , Phosphonoacetic Acid/analogs & derivatives , Phosphonoacetic Acid/pharmacology , Phosphonoacetic Acid/therapeutic use , Phosphopyruvate Hydratase/antagonists & inhibitors , Phosphopyruvate Hydratase/deficiency , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , RNA, Small Interfering/genetics , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics
5.
Nature ; 468(7324): 701-4, 2010 Dec 02.
Article in English | MEDLINE | ID: mdl-21124456

ABSTRACT

The capacity to fine-tune cellular bioenergetics with the demands of stem-cell maintenance and regeneration is central to normal development and ageing, and to organismal survival during periods of acute stress. How energy metabolism and stem-cell homeostatic processes are coordinated is not well understood. Lkb1 acts as an evolutionarily conserved regulator of cellular energy metabolism in eukaryotic cells and functions as the major upstream kinase to phosphorylate AMP-activated protein kinase (AMPK) and 12 other AMPK-related kinases. Whether Lkb1 regulates stem-cell maintenance remains unknown. Here we show that Lkb1 has an essential role in haematopoietic stem cell (HSC) homeostasis. We demonstrate that ablation of Lkb1 in adult mice results in severe pancytopenia and subsequent lethality. Loss of Lkb1 leads to impaired survival and escape from quiescence of HSCs, resulting in exhaustion of the HSC pool and a marked reduction of HSC repopulating potential in vivo. Lkb1 deletion has an impact on cell proliferation in HSCs, but not on more committed compartments, pointing to context-specific functions for Lkb1 in haematopoiesis. The adverse impact of Lkb1 deletion on haematopoiesis was predominantly cell-autonomous and mTOR complex 1 (mTORC1)-independent, and involves multiple mechanisms converging on mitochondrial apoptosis and possibly downregulation of PGC-1 coactivators and their transcriptional network, which have critical roles in mitochondrial biogenesis and function. Thus, Lkb1 serves as an essential regulator of HSCs and haematopoiesis, and more generally, points to the critical importance of coupling energy metabolism and stem-cell homeostasis.


Subject(s)
Cell Cycle/physiology , Energy Metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Homeostasis , Protein Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinases , Animals , Apoptosis , Cell Proliferation , Cell Survival , Female , Gene Deletion , Hematopoiesis , Hematopoietic Stem Cells/pathology , Male , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Mitochondria/pathology , Multiprotein Complexes , Pancytopenia/genetics , Phenotype , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Proteins/metabolism , Survival Analysis , TOR Serine-Threonine Kinases , Transcription Factors/metabolism
7.
Cancer Res ; 81(23): 5935-5947, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34580063

ABSTRACT

Glioblastomas (GBM) are routinely treated with ionizing radiation (IR) but inevitably recur and develop therapy resistance. During treatment, the tissue surrounding tumors is also irradiated. IR potently induces senescence, and senescent stromal cells can promote the growth of neighboring tumor cells by secreting factors that create a senescence-associated secretory phenotype (SASP). Here, we carried out transcriptomic and tumorigenicity analyses in irradiated mouse brains to elucidate how radiotherapy-induced senescence of non-neoplastic brain cells promotes tumor growth. Following cranial irradiation, widespread senescence in the brain occurred, with the astrocytic population being particularly susceptible. Irradiated brains showed an altered transcriptomic profile characterized by upregulation of CDKN1A (p21), a key enforcer of senescence, and several SASP factors, including HGF, the ligand of the receptor tyrosine kinase (RTK) Met. Preirradiation of mouse brains increased Met-driven growth and invasiveness of orthotopically implanted glioma cells. Importantly, irradiated p21-/- mouse brains did not exhibit senescence and consequently failed to promote tumor growth. Senescent astrocytes secreted HGF to activate Met in glioma cells and to promote their migration and invasion in vitro, which could be blocked by HGF-neutralizing antibodies or the Met inhibitor crizotinib. Crizotinib also slowed the growth of glioma cells implanted in preirradiated brains. Treatment with the senolytic drug ABT-263 (navitoclax) selectively killed senescent astrocytes in vivo, significantly attenuating growth of glioma cells implanted in preirradiated brains. These results indicate that SASP factors in the irradiated tumor microenvironment drive GBM growth via RTK activation, underscoring the potential utility of adjuvant senolytic therapy for preventing GBM recurrence after radiotherapy. SIGNIFICANCE: This study uncovers mechanisms by which radiotherapy can promote GBM recurrence by inducing senescence in non-neoplastic brain cells, suggesting that senolytic therapy can blunt recurrent GBM growth and aggressiveness.


Subject(s)
Brain/pathology , Cellular Senescence , Gamma Rays/adverse effects , Glioblastoma/pathology , Neoplasm Recurrence, Local/pathology , Senescence-Associated Secretory Phenotype , Tumor Microenvironment , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Brain/drug effects , Brain/metabolism , Glioblastoma/drug therapy , Glioblastoma/etiology , Glioblastoma/metabolism , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/etiology , Neoplasm Recurrence, Local/metabolism , Sulfonamides/pharmacology
8.
Sci Signal ; 13(635)2020 06 09.
Article in English | MEDLINE | ID: mdl-32518142

ABSTRACT

Endothelial-to-mesenchymal transition (EndMT) is a cellular transdifferentiation program in which endothelial cells partially lose their endothelial identity and acquire mesenchymal-like features. Renal capillary endothelial cells can undergo EndMT in association with persistent damage of the renal parenchyma. The functional consequence(s) of EndMT in kidney fibrosis remains unexplored. Here, we studied the effect of Twist or Snail deficiency in endothelial cells on EndMT in kidney fibrosis. Conditional deletion of Twist1 (which encodes Twist) or Snai1 (which encodes Snail) in VE-cadherin+ or Tie1+ endothelial cells inhibited the emergence of EndMT and improved kidney fibrosis in two different kidney injury/fibrosis mouse models. Suppression of EndMT limited peritubular vascular leakage, reduced tissue hypoxia, and preserved tubular epithelial health and function. Hypoxia, which was exacerbated by EndMT, resulted in increased Myc abundance in tubular epithelial cells, enhanced glycolysis, and suppression of fatty acid oxidation. Pharmacological suppression or epithelial-specific genetic ablation of Myc in tubular epithelial cells ameliorated fibrosis and restored renal parenchymal function and metabolic homeostasis. Together, these findings demonstrate a functional role for EndMT in the response to kidney capillary endothelial injury and highlight the contribution of endothelial-epithelial cross-talk in the development of kidney fibrosis with a potential for therapeutic intervention.


Subject(s)
Cellular Reprogramming , Endothelium, Vascular/metabolism , Kidney Diseases/metabolism , Kidney Tubules/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Endothelium, Vascular/pathology , Fibrosis , Kidney , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney Tubules/pathology , Mice , Mice, Transgenic , Proto-Oncogene Proteins c-myc/genetics
9.
Cancer Res ; 79(14): 3749-3761, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31088835

ABSTRACT

Glioblastomas are lethal brain tumors that are treated with conventional radiation (X-rays and gamma rays) or particle radiation (protons and carbon ions). Paradoxically, radiation is also a risk factor for GBM development, raising the possibility that radiotherapy of brain tumors could promote tumor recurrence or trigger secondary gliomas. In this study, we determined whether tumor suppressor losses commonly displayed by patients with GBM confer susceptibility to radiation-induced glioma. Mice with Nestin-Cre-driven deletions of Trp53 and Pten alleles were intracranially irradiated with X-rays or charged particles of increasing atomic number and linear energy transfer (LET). Mice with loss of one allele each of Trp53 and Pten did not develop spontaneous gliomas, but were highly susceptible to radiation-induced gliomagenesis. Tumor development frequency after exposure to high-LET particle radiation was significantly higher compared with X-rays, in accordance with the irreparability of DNA double-strand breaks (DSB) induced by high-LET radiation. All resultant gliomas, regardless of radiation quality, presented histopathologic features of grade IV lesions and harbored populations of cancer stem-like cells with tumor-propagating properties. Furthermore, all tumors displayed concomitant loss of heterozygosity of Trp53 and Pten along with frequent amplification of the Met receptor tyrosine kinase, which conferred a stem cell phenotype to tumor cells. Our results demonstrate that radiation-induced DSBs cooperate with preexisting tumor suppressor losses to generate high-grade gliomas. Moreover, our mouse model can be used for studies on radiation-induced development of GBM and therapeutic strategies. SIGNIFICANCE: This study uncovers mechanisms by which ionizing radiation, especially particle radiation, promote GBM development or recurrence.


Subject(s)
Brain Neoplasms/genetics , DNA Breaks, Double-Stranded , Glioblastoma/genetics , Glioma/genetics , Neoplasms, Radiation-Induced/genetics , PTEN Phosphohydrolase/genetics , Tumor Suppressor Protein p53/genetics , Animals , Brain Neoplasms/pathology , Female , Glioblastoma/pathology , Glioma/pathology , Humans , Linear Energy Transfer , Loss of Heterozygosity , Male , Mice , Mice, Inbred C57BL , Neoplasm Grading , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/radiation effects
10.
Cancer Discov ; 1(2): 158-69, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21984975

ABSTRACT

Initiation of pancreatic ductal adenocarcinoma (PDAC) is driven by oncogenic KRAS mutation, and disease progression is associated with frequent loss of tumor suppressors. In this study, human PDAC genome analyses revealed frequent deletion of the PTEN gene as well as loss of expression in primary tumor specimens. A potential role for PTEN as a haploinsufficient tumor suppressor is further supported by mouse genetic studies. The mouse PDAC driven by oncogenic Kras mutation and Pten deficiency also sustains spontaneous extinction of Ink4a expression and shows prometastatic capacity. Unbiased transcriptomic analyses established that combined oncogenic Kras and Pten loss promotes marked NF-κB activation and its cytokine network, with accompanying robust stromal activation and immune cell infiltration with known tumor-promoting properties. Thus, PTEN/phosphoinositide 3-kinase (PI3K) pathway alteration is a common event in PDAC development and functions in part to strongly activate the NF-κB network, which may serve to shape the PDAC tumor microenvironment.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/genetics , Cytokines/genetics , NF-kappa B/genetics , PTEN Phosphohydrolase/genetics , Pancreatic Neoplasms/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Animals, Genetically Modified , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cytokines/metabolism , Genes, Tumor Suppressor , Humans , Mice , Mice, Inbred C57BL , Mutation , NF-kappa B/metabolism , PTEN Phosphohydrolase/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
11.
Cancer Cell ; 18(5): 472-84, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-21075312

ABSTRACT

mTORC1 is a validated therapeutic target for renal cell carcinoma (RCC). Here, analysis of Tsc1-deficient (mTORC1 hyperactivation) mice uncovered a FoxO-dependent negative feedback circuit constraining mTORC1-mediated renal tumorigenesis. We document robust FoxO activation in Tsc1-deficient benign polycystic kidneys and FoxO extinction on progression to murine renal tumors; murine renal tumor progression on genetic deletion of both Tsc1 and FoxOs; and downregulated FoxO expression in most human renal clear cell and papillary carcinomas, yet continued expression in less aggressive RCCs and benign renal tumor subtypes. Mechanistically, integrated analyses revealed that FoxO-mediated block operates via suppression of Myc through upregulation of the Myc antagonists, Mxi1-SRα and mir-145, establishing a FoxO-Mxi1-SRα/mir-145 axis as a major progression block in renal tumor development.


Subject(s)
Carcinoma, Renal Cell/metabolism , Forkhead Transcription Factors/physiology , Kidney Neoplasms/metabolism , Proteins/physiology , Animals , Apoptosis , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/physiology , Carcinoma, Renal Cell/pathology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Humans , Kidney Neoplasms/pathology , Mechanistic Target of Rapamycin Complex 1 , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , MicroRNAs/physiology , Multiprotein Complexes , Proteins/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/physiology , Signal Transduction , TOR Serine-Threonine Kinases , Transcriptional Activation , Tuberous Sclerosis Complex 1 Protein , Tumor Cells, Cultured , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL