Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
Add more filters

Publication year range
1.
Circ Res ; 134(4): 346-350, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38359093

ABSTRACT

Transient receptor potential (TRP) cation channels are a diverse family of channels whose members play prominent roles as cellular sensors and effectors. The important role of TRP channels (and mechanosensitive piezo channels) in the complex interaction of our senses with the environment was underlined by the award of the Nobel Prize in Physiology or Medicine to 2 pioneers in this field, David Julius and Ardem Patapoutian. There are many competent and comprehensive reviews on many aspects of the TRP channels, and there is no intention to expand on them. Rather, after an introduction to the nomenclature, the molecular architecture of native TRP channel/protein complexes in vivo will be summarized using TRP channels of the canonical transient receptor potential subfamily as an example. This molecular architecture provides the basis for the signatures of native canonical transient receptor potential currents and their control by endogenous modulators and potential drugs.


Subject(s)
Transient Receptor Potential Channels
2.
Arterioscler Thromb Vasc Biol ; 44(8): 1833-1851, 2024 08.
Article in English | MEDLINE | ID: mdl-38957986

ABSTRACT

BACKGROUND: Tight control of cytoplasmic Ca2+ concentration in endothelial cells is essential for the regulation of endothelial barrier function. Here, we investigated the role of Cavß3, a subunit of voltage-gated Ca2+ (Cav) channels, in modulating Ca2+ signaling in brain microvascular endothelial cells (BMECs) and how this contributes to the integrity of the blood-brain barrier. METHODS: We investigated the function of Cavß3 in BMECs by Ca2+ imaging and Western blot, examined the endothelial barrier function in vitro and the integrity of the blood-brain barrier in vivo, and evaluated disease course after induction of experimental autoimmune encephalomyelitis in mice using Cavß3-/- (Cavß3-deficient) mice as controls. RESULTS: We identified Cavß3 protein in BMECs, but electrophysiological recordings did not reveal significant Cav channel activity. In vivo, blood-brain barrier integrity was reduced in the absence of Cavß3. After induction of experimental autoimmune encephalomyelitis, Cavß3-/- mice showed earlier disease onset with exacerbated clinical disability and increased T-cell infiltration. In vitro, the transendothelial resistance of Cavß3-/- BMEC monolayers was lower than that of wild-type BMEC monolayers, and the organization of the junctional protein ZO-1 (zona occludens-1) was impaired. Thrombin stimulates inositol 1,4,5-trisphosphate-dependent Ca2+ release, which facilitates cell contraction and enhances endothelial barrier permeability via Ca2+-dependent phosphorylation of MLC (myosin light chain). These effects were more pronounced in Cavß3-/- than in wild-type BMECs, whereas the differences were abolished in the presence of the MLCK (MLC kinase) inhibitor ML-7. Expression of Cacnb3 cDNA in Cavß3-/- BMECs restored the wild-type phenotype. Coimmunoprecipitation and mass spectrometry demonstrated the association of Cavß3 with inositol 1,4,5-trisphosphate receptor proteins. CONCLUSIONS: Independent of its function as a subunit of Cav channels, Cavß3 interacts with the inositol 1,4,5-trisphosphate receptor and is involved in the tight control of cytoplasmic Ca2+ concentration and Ca2+-dependent MLC phosphorylation in BMECs, and this role of Cavß3 in BMECs contributes to blood-brain barrier integrity and attenuates the severity of experimental autoimmune encephalomyelitis disease.


Subject(s)
Blood-Brain Barrier , Calcium Signaling , Encephalomyelitis, Autoimmune, Experimental , Endothelial Cells , Animals , Female , Male , Mice , Blood-Brain Barrier/metabolism , Calcium/metabolism , Calcium Channels/metabolism , Calcium Channels/genetics , Capillary Permeability , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Endothelial Cells/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Inositol 1,4,5-Trisphosphate Receptors/genetics , Mice, Inbred C57BL , Mice, Knockout , Myosin Light Chains/metabolism , Myosin-Light-Chain Kinase/metabolism , Myosin-Light-Chain Kinase/genetics , Phosphorylation
3.
Proc Natl Acad Sci U S A ; 119(20): e2120870119, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35544691

ABSTRACT

Transient receptor potential canonical 4 (TRPC4) is a receptor-operated cation channel codependent on both the Gq/11­phospholipase C signaling pathway and Gi/o proteins for activation. This makes TRPC4 an excellent coincidence sensor of neurotransmission through Gq/11- and Gi/o-coupled receptors. In whole-cell slice recordings of lateral septal neurons, TRPC4 mediates a strong depolarizing plateau that shuts down action potential firing, which may or may not be followed by a hyperpolarization that extends the firing pause to varying durations depending on the strength of Gi/o stimulation. We show that the depolarizing plateau is codependent on Gq/11-coupled group I metabotropic glutamate receptors and on Gi/o-coupled γ-aminobutyric acid type B receptors. The hyperpolarization is mediated by Gi/o activation of G protein­activated inwardly rectifying K+ (GIRK) channels. Moreover, the firing patterns, elicited by either electrical stimulation or receptor agonists, encode information about the relative strengths of Gq/11 and Gi/o inputs in the following fashion. Pure Gq/11 input produces weak depolarization accompanied by firing acceleration, whereas pure Gi/o input causes hyperpolarization that pauses firing. Although coincident Gq/11­Gi/o inputs also pause firing, the pause is preceded by a burst, and both the pause duration and firing recovery patterns reflect the relative strengths of Gq/11 versus Gi/o inputs. Computer simulations demonstrate that different combinations of TRPC4 and GIRK conductances are sufficient to produce the range of firing patterns observed experimentally. Thus, concurrent neurotransmission through the Gq/11 and Gi/o pathways is converted to discernible electrical responses by the joint actions of TRPC4 and GIRK for communication to downstream neurons.


Subject(s)
Action Potentials , G Protein-Coupled Inwardly-Rectifying Potassium Channels , GTP-Binding Protein alpha Subunits, Gi-Go , GTP-Binding Protein alpha Subunits , Neurons , Synaptic Transmission , TRPC Cation Channels , Animals , Cell Communication , G Protein-Coupled Inwardly-Rectifying Potassium Channels/physiology , GTP-Binding Protein alpha Subunits/physiology , GTP-Binding Protein alpha Subunits, Gi-Go/physiology , Mice , Neurons/physiology , TRPC Cation Channels/physiology
4.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-34001616

ABSTRACT

L-type voltage-gated CaV1.2 channels crucially regulate cardiac muscle contraction. Activation of ß-adrenergic receptors (ß-AR) augments contraction via protein kinase A (PKA)-induced increase of calcium influx through CaV1.2 channels. To date, the full ß-AR cascade has never been heterologously reconstituted. A recent study identified Rad, a CaV1.2 inhibitory protein, as essential for PKA regulation of CaV1.2. We corroborated this finding and reconstituted the complete pathway with agonist activation of ß1-AR or ß2-AR in Xenopus oocytes. We found, and distinguished between, two distinct pathways of PKA modulation of CaV1.2: Rad dependent (∼80% of total) and Rad independent. The reconstituted system reproduces the known features of ß-AR regulation in cardiomyocytes and reveals several aspects: the differential regulation of posttranslationally modified CaV1.2 variants and the distinct features of ß1-AR versus ß2-AR activity. This system allows for the addressing of central unresolved issues in the ß-AR-CaV1.2 cascade and will facilitate the development of therapies for catecholamine-induced cardiac pathologies.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Myocytes, Cardiac/metabolism , Receptors, Adrenergic, beta/metabolism , ras Proteins/metabolism , Animals , Calcium Channels, L-Type/genetics , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Gene Expression Regulation , Humans , Ion Transport , Mice , Mutation , Myocytes, Cardiac/cytology , Oocytes/cytology , Oocytes/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA/genetics , RNA/metabolism , Rabbits , Receptors, Adrenergic, beta/genetics , Xenopus laevis , ras Proteins/genetics
5.
Mol Pharmacol ; 104(4): 144-153, 2023 10.
Article in English | MEDLINE | ID: mdl-37399325

ABSTRACT

Englerin A (EA) is a potent agonist of tetrameric transient receptor potential canonical (TRPC) ion channels containing TRPC4 and TRPC5 subunits. TRPC proteins form cation channels that are activated by plasma membrane receptors. They convert extracellular signals such as angiotensin II into cellular responses, whereupon Na+ and Ca2+ influx and depolarization of the plasma membrane occur. Via depolarization, voltage-gated Ca2+ (CaV) channels can be activated, further increasing Ca2+ influx. We investigated the extent to which EA also affects the functions of CaV channels using the high-voltage-activated L-type Ca2+ channel CaV1.2 and the low-voltage-activated T-type Ca2+ channels CaV3.1, CaV3.2, and CaV3.3. After expression of cDNAs in human embryonic kidney (HEK293) cells, EA inhibited currents through all T-type channels at half-maximal inhibitory concentrations (IC50) of 7.5 to 10.3 µM. In zona glomerulosa cells of the adrenal gland, angiotensin II-induced elevation of cytoplasmic Ca2+ concentration leads to aldosterone release. We identified transcripts of low- and high-voltage-activated CaV channels and of TRPC1 and TRPC5 in the human adrenocortical (HAC15) zona glomerulosa cell line. Although no EA-induced TRPC activity was measurable, Ca2+ channel blockers distinguished T- and L-type Ca2+ currents. EA blocked 60% of the CaV current in HAC15 cells and T- and L-type channels analyzed at -30 mV and 10 mV were inhibited with IC50 values of 2.3 and 2.6 µM, respectively. Although the T-type blocker Z944 reduced basal and angiotensin II-induced 24-hour aldosterone release, EA was not effective. In summary, we show here that EA blocks CaV1.2 and T-type CaV channels at low-micromolar concentrations. SIGNIFICANCE STATEMENT: In this study we showed that englerin A (EA), a potent agonist of tetrameric transient receptor potential canonical (TRPC)4- or TRPC5-containing channels and currently under investigation to treat certain types of cancer, also inhibits the L-type voltage-gated Ca2+ (CaV) channel CaV1.2 and the T-type CaV channels CaV3.1, CaV3.2, and CaV3.3 channels at low micromolar concentrations.


Subject(s)
Calcium Channels, T-Type , Transient Receptor Potential Channels , Humans , Calcium Channels, T-Type/metabolism , Angiotensin II/pharmacology , Angiotensin II/metabolism , Aldosterone/pharmacology , HEK293 Cells , TRPC Cation Channels/metabolism , Calcium/metabolism
6.
Respir Res ; 24(1): 267, 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37925434

ABSTRACT

BACKGROUND: Airway tuft cells, formerly called brush cells have long been described only morphologically in human airways. More recent RNAseq studies described a chemosensory cell population, which includes tuft cells, by a distinct gene transcription signature. Yet, until which level in the tracheobronchial tree in native human airway epithelium tuft cells occur and if they function as regulators of innate immunity, e.g., by regulating mucociliary clearance, remained largely elusive. METHODS: We performed immunohistochemistry, RT-PCR and immunoblotting analyses for various tuft cell markers to confirm the presence of this cell type in human tracheal samples. Immunohistochemistry was conducted to study the distribution of tuft cells along the intrapulmonary airways in humans. We assessed the influence of bitter substances and the taste transduction pathway on mucociliary clearance in mouse and human tracheal samples by measuring particle transport speed. RESULTS: Tuft cells identified by the expression of their well-established marker POU class 2 homeobox 3 (POU2F3) were present from the trachea to the bronchioles. We identified choline acetyltransferase in POU2F3 expressing cells as well as the transient receptor potential melastatin 5 (TRPM5) channel in a small population of tracheal epithelial cells with morphological appearance of tuft cells. Application of bitter substances, such as denatonium, led to an increase in mucociliary clearance in human tracheal preparations. This was dependent on activation of the TRPM5 channel and involved cholinergic and nitric oxide signalling, indicating a functional role for human tuft cells in the regulation of mucociliary clearance. CONCLUSIONS: We were able to detect tuft cells in the tracheobronchial tree down to the level of the bronchioles. Moreover, taste transduction and cholinergic signalling occur in the same cells and regulate mucociliary clearance. Thus, tuft cells are potentially involved in the regulation of innate immunity in human airways.


Subject(s)
Mucociliary Clearance , Trachea , Humans , Mice , Animals , Trachea/physiology , Signal Transduction , Taste , Cholinergic Agents/metabolism
7.
Cell Mol Biol Lett ; 28(1): 8, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36694129

ABSTRACT

Among the concepts in biology that are widely taken granted is a potentiated cooperative effect of multiple miRNAs on the same target. This strong hypothesis contrasts insufficient experimental evidence. The quantity as well as the quality of required side constraints of cooperative binding remain largely hidden. For miR-21-5p and miR-155-5p, two commonly investigated regulators across diseases, we selected 15 joint target genes. These were chosen to represent various neighboring 3'UTR binding site constellations, partially exceeding the distance rules that have been established for over a decade. We identified different cooperative scenarios with the binding of one miRNA enhancing the binding effects of the other miRNA and vice versa. Using both, reporter assays and whole proteome analyses, we observed these cooperative miRNA effects for genes that bear 3'UTR binding sites at distances greater than the previously defined limits. Astonishingly, the experiments provide even stronger evidence for cooperative miRNA effects than originally postulated. In the light of these findings the definition of targetomes specified for single miRNAs need to be refined by a concept that acknowledges the cooperative effects of miRNAs.


Subject(s)
MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , 3' Untranslated Regions , Binding Sites
8.
J Biol Chem ; 297(4): 101126, 2021 10.
Article in English | MEDLINE | ID: mdl-34461097

ABSTRACT

Transient receptor potential (TRP) cation channels, which are conserved across mammals, flies, fish, sea squirts, worms, and fungi, essentially contribute to cellular Ca2+ signaling. The activity of the unique TRP channel in yeast, TRP yeast channel 1 (TRPY1), relies on the vacuolar and cytoplasmic Ca2+ concentration. However, the mechanism(s) of Ca2+-dependent regulation of TRPY1 and possible contribution(s) of Ca2+-binding proteins are yet not well understood. Our results demonstrate a Ca2+-dependent binding of yeast calmodulin (CaM) to TRPY1. TRPY1 activity was increased in the cmd1-6 yeast strain, carrying a non-Ca2+-binding CaM mutant, compared with the parent strain expressing wt CaM (Cmd1). Expression of Cmd1 in cmd1-6 yeast rescued the wt phenotype. In addition, in human embryonic kidney 293 cells, hypertonic shock-induced TRPY1-dependent Ca2+ influx and Ca2+ release were increased by the CaM antagonist ophiobolin A. We found that coexpression of mammalian CaM impeded the activity of TRPY1 by reinforcing effects of endogenous CaM. Finally, inhibition of TRPY1 by Ca2+-CaM required the cytoplasmic amino acid stretch E33-Y92. In summary, our results show that TRPY1 is under inhibitory control of Ca2+-CaM and that mammalian CaM can replace yeast CaM for this inhibition. These findings add TRPY1 to the innumerable cellular proteins, which include a variety of ion channels, that use CaM as a constitutive or dissociable Ca2+-sensing subunit, and contribute to a better understanding of the modulatory mechanisms of Ca2+-CaM.


Subject(s)
Calcium Signaling , Calcium/metabolism , Calmodulin/metabolism , Saccharomyces cerevisiae Proteins/metabolism , TRPC Cation Channels/metabolism , Vacuoles/metabolism , Calcium/chemistry , Calmodulin/antagonists & inhibitors , Calmodulin/chemistry , Calmodulin/genetics , HEK293 Cells , Humans , Protein Domains , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Sesterterpenes/pharmacology , TRPC Cation Channels/chemistry , TRPC Cation Channels/genetics , Vacuoles/chemistry , Vacuoles/genetics
9.
Eur Respir J ; 60(4)2022 10.
Article in English | MEDLINE | ID: mdl-35450969

ABSTRACT

BACKGROUND: Prostaglandin E2 (PGE2) increases pulmonary vascular permeability by activation of the PGE2 receptor 3 (EP3), which may explain adverse pulmonary effects of the EP1/EP3 receptor agonist sulprostone in patients. In addition, PGE2 contributes to pulmonary oedema in response to platelet-activating factor (PAF). PAF increases endothelial permeability by recruiting the cation channel transient receptor potential canonical 6 (TRPC6) to endothelial caveolae via acid sphingomyelinase (ASMase). Yet, the roles of PGE2 and EP3 in this pathway are unknown. We hypothesised that EP3 receptor activation may increase pulmonary vascular permeability by activation of TRPC6, and thus, synergise with ASMase-mediated TRPC6 recruitment in PAF-induced lung oedema. METHODS: In isolated lungs, we measured increases in endothelial calcium (ΔCa2+) or lung weight (Δweight), and endothelial caveolar TRPC6 abundance as well as phosphorylation. RESULTS: PAF-induced ΔCa2+ and Δweight were attenuated in EP3-deficient mice. Sulprostone replicated PAF-induced ΔCa2+ and Δweight which were blocked by pharmacological/genetic inhibition of TRPC6, ASMase or Src-family kinases (SrcFK). PAF, but not sulprostone, increased TRPC6 abundance in endothelial caveolae. Immunoprecipitation revealed PAF- and sulprostone-induced tyrosine-phosphorylation of TRPC6 that was prevented by inhibition of phospholipase C (PLC) or SrcFK. PLC inhibition also blocked sulprostone-induced ΔCa2+ and Δweight, as did inhibition of SrcFK or inhibitory G-protein (Gi) signalling. CONCLUSIONS: EP3 activation triggers pulmonary oedema via Gi-dependent activation of PLC and subsequent SrcFK-dependent tyrosine phosphorylation of TRPC6. In PAF-induced lung oedema, this TRPC6 activation coincides with ASMase-dependent caveolar recruitment of TRPC6, resulting in rapid endothelial Ca2+ influx and barrier failure.


Subject(s)
Pulmonary Edema , Animals , Calcium/metabolism , Edema , Endothelial Cells/metabolism , GTP-Binding Proteins/metabolism , Lung/metabolism , Mice , Platelet Activating Factor , Sphingomyelin Phosphodiesterase , TRPC6 Cation Channel , Type C Phospholipases/metabolism , Tyrosine , src-Family Kinases
10.
PLoS Biol ; 17(9): e3000445, 2019 09.
Article in English | MEDLINE | ID: mdl-31536487

ABSTRACT

Transient receptor potential (TRP) proteins form Ca2+-permeable, nonselective cation channels, but their role in neuronal Ca2+ homeostasis is elusive. In the present paper, we show that TRPC channels potently regulate synaptic plasticity by changing the presynaptic Ca2+-homeostasis of hippocampal neurons. Specifically, loss of TRPC1/C4/C5 channels decreases basal-evoked secretion, reduces the pool size of readily releasable vesicles, and accelerates synaptic depression during high-frequency stimulation (HFS). In contrast, primary TRPC5 channel-expressing neurons, identified by a novel TRPC5-τ-green fluorescent protein (τGFP) knockin mouse line, show strong short-term enhancement (STE) of synaptic signaling during HFS, indicating a key role of TRPC5 in short-term plasticity. Lentiviral expression of either TRPC1 or TRPC5 turns classic synaptic depression of wild-type neurons into STE, demonstrating that TRPCs are instrumental in regulating synaptic plasticity. Presynaptic Ca2+ imaging shows that TRPC activity strongly boosts synaptic Ca2+ dynamics, showing that TRPC channels provide an additional presynaptic Ca2+ entry pathway, which efficiently regulates synaptic strength and plasticity.


Subject(s)
Calcium Signaling , Neuronal Plasticity , TRPC Cation Channels/physiology , Animals , Calcium Channels/metabolism , Female , Glutamine/metabolism , Hippocampus/metabolism , Male , Mice, Knockout , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL