Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 295
Filter
Add more filters

Publication year range
1.
Cell ; 184(16): 4284-4298.e27, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34233164

ABSTRACT

Many organisms evolved strategies to survive desiccation. Plant seeds protect dehydrated embryos from various stressors and can lay dormant for millennia. Hydration is the key trigger to initiate germination, but the mechanism by which seeds sense water remains unresolved. We identified an uncharacterized Arabidopsis thaliana prion-like protein we named FLOE1, which phase separates upon hydration and allows the embryo to sense water stress. We demonstrate that biophysical states of FLOE1 condensates modulate its biological function in vivo in suppressing seed germination under unfavorable environments. We find intragenic, intraspecific, and interspecific natural variation in FLOE1 expression and phase separation and show that intragenic variation is associated with adaptive germination strategies in natural populations. This combination of molecular, organismal, and ecological studies uncovers FLOE1 as a tunable environmental sensor with direct implications for the design of drought-resistant crops, in the face of climate change.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Germination , Intercellular Signaling Peptides and Proteins/metabolism , Prions/metabolism , Seeds/growth & development , Water/metabolism , Arabidopsis/genetics , Arabidopsis/ultrastructure , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/ultrastructure , Dehydration , Imaging, Three-Dimensional , Intercellular Signaling Peptides and Proteins/chemistry , Mutation/genetics , Plant Dormancy , Plants, Genetically Modified , Protein Domains , Protein Isoforms/metabolism , Seeds/ultrastructure
2.
Chem Rev ; 123(14): 9010-9035, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37132487

ABSTRACT

The molecular machinery that enables life has evolved in water, yet many of the organisms around us are able to survive even extreme desiccation. Especially remarkable are single-cell and sedentary organisms that rely on specialized biomolecular machinery to survive in environments that are routinely subjected to a near-complete lack of water. In this review, we zoom in on the molecular level of what is happening in the cellular environment under water stress. We cover the various mechanisms by which biochemical components of the cell can dysfunction in dehydrated cells and detail the different strategies that organisms have evolved to eliminate or cope with these desiccation-induced perturbations. We specifically focus on two survival strategies: (1) the use of disordered proteins to protect the cellular environment before, during, and in the recovery from desiccation, and (2) the use of biomolecular condensates as a self-assembly mechanism that can sequester or protect specific cellular machinery in times of water stress. We provide a summary of experimental work describing the critical contributions of disordered proteins and biomolecular condensates to the cellular response to water loss and highlight their role in desiccation tolerance. Desiccation biology is an exciting area of cell biology, still far from being completely explored. Understanding it on the molecular level is bound to give us critical new insights in how life adapted/can adapt to the loss of water, spanning from the early colonization of land to how we can deal with climate change in our future.


Subject(s)
Dehydration , Desiccation , Humans , Adaptation, Physiological/physiology , Biophysics
3.
J Med Virol ; 95(10): e29117, 2023 10.
Article in English | MEDLINE | ID: mdl-37772612

ABSTRACT

The mpox outbreaks reported in several countries from May 2022 have shown an epidemiological profile different from that observed in previous years, raising a global public health alert. This issue is particularly important for Brazil, the second country with the highest number of mpox cases. Herein, we performed a retrospective cross-sectional study on mpox cases notified in Pernambuco state, northeastern Brazil, between July 2022 and March 2023. Confirmed mpox cases were analyzed in a space-time series and their social and clinical characteristics were compared with those of suspect-negative cases, including a multivariate logistic regression to identify predictors associated with a positive diagnosis. A total of 1493 suspected mpox cases were reported, of which 362 cases (24.2%) were confirmed and distributed in 33 municipalities. Most mpox cases occurred between epidemiological weeks (EW) 33 and 39 of 2022, with the highest moving average in EW 34 and 35 (36 and 31.5, respectively). The most frequent clinical signs and symptoms were rash (87.3%), fever (60.2%), headache (45.3%), and genital/perianal lesions (40.3%). In the multivariate analysis, three variables showed considerable performance in predicting a positive mpox diagnosis (area under the ROC curve = 0.87; 95% CI: 0.84-0.90): sexual orientation (nonheterosexual; OR: 23.08; 95% CI: 13.97-38.15), male sex (OR: 2.05; 95% CI: 1.10-3.85), and multiple partnerships (OR: 1.95; 95% CI: 1.15-3.32). Overall, in addition to the detailed spatiotemporal description of mpox cases, which may contribute to appropriate public health measures, our study brings insights into mpox epidemiology by describing predictors associated with a positive diagnosis.


Subject(s)
Mpox (monkeypox) , Female , Humans , Male , Brazil/epidemiology , Cross-Sectional Studies , Retrospective Studies , Spatio-Temporal Analysis
4.
Analyst ; 149(1): 108-124, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37982410

ABSTRACT

Dopamine (DA) and uric acid (UA), which are vital components in human metabolism, cause several health problems if they are present in altered concentrations; thus, the determination of DA and UA is essential in real samples using selective sensors. In the present study, graphite carbon paste electrodes (CPE) were fabricated using ZnO/carbon quantum dots (ZnO/CQDs) and employed as electrochemical sensors for the detection of DA and UA. These electrodes were fully characterized via different analytical techniques (XRD, SEM, TEM, XPS, and EDS). The electrochemical responses from the modified electrodes were evaluated using cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy. The results showed that the present electrode has exhibited high sensitivity towards DA, recognizing even at low concentrations (0.12 µM), and no inference was observed in the presence of UA. The ZnO/CQD electrode was applied for the simultaneous detection of co-existing DA and UA in real human urine samples and the peak potential separation between DA and UA was found to be greatly associated with the synergistic effect originated from ZnO and CQDs. The limit of detection (LOD) of the electrode was analyzed, and compared with other commercially available electrodes. Thus, the ZnO/CQD electrode was used to detect DA and UA in real samples, such as Saccharomyces cerevisiae cells.


Subject(s)
Biosensing Techniques , Quantum Dots , Zinc Oxide , Humans , Carbon/chemistry , Uric Acid/urine , Dopamine/chemistry , Zinc Oxide/chemistry , Electrochemical Techniques/methods , Ascorbic Acid/chemistry , Electrodes , Models, Theoretical , Biosensing Techniques/methods
5.
Arch Virol ; 168(2): 52, 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36609926

ABSTRACT

Bovine papillomaviruses (BPVs) exhibit a high degree of genetic variability, and several viral types have been identified based on analysis of the L1 gene. The L1 is the main capsid protein and the main target for neutralizing antibodies. We performed a retrospective study on BPVs circulating in Rio Grande do Sul state, Southern Brazil, in 2016-2020. DNA from 43 bovine papilloma samples were amplified using two degenerate primer sets - FAP59/64 and MY09/11 - targeting the L1 region, and analyzed for phylogeny, mixed BPV infections (coinfections) and amino acid (aa) sequences. We also performed an in silico analysis with 114 BPV L1 sequences from the GenBank database to assess the agreement between the phylogeny obtained based on complete L1 sequences versus that based on the region amplified using the FAP59/64 and MY09/11 primer sets. Considering single and coinfections, we identified 31 BPV-1 (31/43; 72.1%), 27 BPV-2 (27/43; 62.8%) and 4 BPV-6 (4/43; 9.3%). Coinfections with BPV-1 and BPV-2 were observed in 61.3% of the samples. Our results are supported by in silico analyses that demonstrate that the classification using FAP59/64 or MY09/11 matches the complete L1 results, except for BPV-17 and -18, which may be mistakenly classified depending on the primers used. Furthermore, we found unique or rare amino acids in at least one L1 sequence of each BPV type identified in our study, some of which have been identified previously in papillomavirus epitopes, suggesting immune-mediated selection. Finally, our study provides an overview of BPVs circulating in Southern Brazil over the last five years and point to the combined use of primers FAP59/64 and MY09/11 for analysis of BPV coinfections and putative epitopes.


Subject(s)
Bovine papillomavirus 1 , Cattle Diseases , Coinfection , Papillomavirus Infections , Animals , Cattle , Papillomavirus Infections/epidemiology , Papillomavirus Infections/veterinary , Phylogeny , Brazil/epidemiology , Amino Acids/genetics , Retrospective Studies , DNA, Viral/genetics , Papillomaviridae/genetics , Cattle Diseases/epidemiology
6.
Virus Genes ; 59(6): 836-844, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37589803

ABSTRACT

Whole-genome phylogenetic analysis, the most suitable strategy for subtyping bovine viral diarrhea virus 1 (BVDV-1) and BVDV-2, is not feasible for many laboratories. Consequently, BVDV isolates/strains have been frequently subtyped based on analysis of single genomic regions, mainly the 5' untranslated region (UTR). This approach, however, may lead to inaccurate and/or poorly statistically supported viral classification. Herein, we describe novel primer sets whose amplicons may be easily sequenced and used for BVDV subtyping. Initially, genomic regions previously described as the most suitable targets for BVDV subtyping were analyzed for design of high-coverage primers. The putative amplicons were analyzed in silico for their suitability to reproduce the phylogenetic classification of 118 BVDV-1 and 88 BVDV-2 complete/near-complete genomes (CNCGs) (GenBank). This analysis was also performed considering the region amplifiable by primers HCV90-368, 324-326 and BP189-389 (5'UTR), which have been used for BVDV diagnosis and/or classification. After confirming the agreement between the analyses of our primers' amplicon versus the CNCGs, we optimized the RT-PCRs and evaluated their performance for amplification of BVDV isolates/strains (n = 35 for BVDV-1; n = 33 for BVDV-2). Among the potential targets for BVDV subtyping, we designed high-coverage primers for NS3-NS4A (BVDV-1) (526 bp amplicon) and NS5B (BVDV-2) (728 bp). The classification based on these regions fully reproduced the subtyping of all CNCGs. On the other hand, subtyping based on the putative amplicons from primers HCV90-368, 324-326 and BP189-389 showed disagreements in relation the CNCG analysis. The NS3-NS4A and NS5B primers also allowed the amplification of all BVDV isolates/strains tested. Finally, we suggest the use of these primers in future phylogenetic and epidemiological studies of BVDVs.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Diarrhea Virus 1, Bovine Viral , Diarrhea Virus 2, Bovine Viral , Diarrhea Viruses, Bovine Viral , Animals , Cattle , Diarrhea Virus 1, Bovine Viral/genetics , Diarrhea Virus 2, Bovine Viral/genetics , Phylogeny , Genomics , 5' Untranslated Regions/genetics , Diarrhea Viruses, Bovine Viral/genetics
7.
J Environ Manage ; 325(Pt A): 116595, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36419290

ABSTRACT

Agricultural washing wastewater (AWW) is an important source of pesticides that, given its intrinsic characteristics, has a high potential to be treated by fungal bioremediation using white rot fungi. In the present study, two AWW treatment strategies were compared: a fluidized-bed reactor (FBR) with T. versicolor pellets and a rotating drum bioreactor (RDB) with T. versicolor immobilized on wood. The RDB effluent showed better results in all studied parameters compared to those of the FBR, including pesticide removal (87%), toxicity, laccase activity, COD, absorbance and microbial communities. Additionally, the fungal assemblage showed that T. versicolor was successfully immobilized in the RDB, which triggered a major shift in the initial community. Afterwards, solid by-products were treated in a fungal biopile-like system reaching high biodegradation rates. Therefore, this study validates the fungal RDB as a viable alternative for AWW treatment, opening up the possibility of a further in-situ and full-scale application.


Subject(s)
Pesticides , Wastewater , Agriculture , Bioreactors , Biodegradation, Environmental
8.
Arch Virol ; 167(12): 2545-2553, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36104508

ABSTRACT

Bovine pestiviruses are members of the species Pestivirus A (bovine viral diarrhea virus 1, BVDV-1), Pestivirus B (BVDV-2) or Pestivirus H (HoBiPeV). To date, BVDV-2 isolates/strains have been classified into three subtypes (a-c) by phylogenetic analysis, and an additional subtype (d) has been proposed based on 5' untranslated region (UTR) secondary structures. In a previous study, we identified some BVDV-2 sequences in the GenBank database that could not be classified as subtype a, b or c by phylogenetic analysis of their genomes, UTRs or individual genes. Here, we performed a detailed study of these sequences and assessed whether they might represent a distinct BVDV-2 subtype. Initially, we collected 85 BVDV-2 complete/near-complete genomes (CNCGs) from GenBank and performed a "proof of equivalence" between phylogenetic analyses based on CNCGs and open reading frames (ORFs), which showed that ORFs may be reliably used as a reference target for BVDV-2 phylogeny, allowing us to increase our dataset to 139 sequences. Among these, we found seven sequences that could not be classified as BVDV-2a-c. The same was observed in the phylogenetic analysis of CNCGs and viral genes. In addition, the seven non-BVDV-2a-c sequences formed a distinct cluster in all phylogenetic trees, which we propose to term BVDV-2e. BVDV-2e also showed 44 amino acid changes compared to BVDV-2a-c, 20 of which are in well-defined positions. Importantly, an additional phylogenetic analysis including BVDV-2d and a pairwise comparison of BVDV-2e and BVDV-2d sequences also supported the difference between these subtypes. Finally, we propose the recognition of BVDV-2e as a distinct BVDV-2 subtype and encourage its inclusion in future phylogenetic analyses to understand its distribution and evolution.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Diarrhea Virus 1, Bovine Viral , Diarrhea Virus 2, Bovine Viral , Diarrhea Viruses, Bovine Viral , Pestivirus , Animals , Cattle , Diarrhea Virus 2, Bovine Viral/genetics , Phylogeny , Diarrhea Virus 1, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/genetics , Pestivirus/genetics , 5' Untranslated Regions/genetics
9.
Arch Virol ; 167(8): 1659-1668, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35708765

ABSTRACT

Bovine gammaherpesvirus 4 (BoHV-4) is ubiquitous in cattle worldwide, and it has been detected in animals exhibiting broad clinical presentations. The virus has been detected in the United States since the 1970s; however, its clinical relevance remains unknown. Here, we determined the complete genome sequences of two contemporary BoHV-4 isolates obtained from respiratory (SD16-38) or reproductive (SD16-49) tract specimens and assessed clinical, virological, and pathological outcomes upon intranasal (IN) inoculation of calves with the respiratory BoHV-4 isolate SD16-38. A slight and transient increase in body temperature was observed in BoHV-4-inoculated calves. Additionally, transient viremia and virus shedding in nasal secretions were observed in all inoculated calves. BoHV-4 DNA was detected by nested PCR in the tonsil and regional lymph nodes (LNs) of calves euthanized on day 5 post-inoculation (pi) and in the lungs of calves euthanized on day 10 pi. Calves euthanized on day 35 pi harbored BoHV-4 DNA in the respiratory tract (turbinates, trachea, lungs), regional lymphoid tissues, and trigeminal ganglia. Interestingly, in situ hybridization revealed the presence of BoHV-4 DNA in nerve bundles surrounding the trigeminal ganglia and retropharyngeal lymph nodes (day 35 pi). No histological changes were observed in the respiratory tract (turbinate, trachea, and lung), lymphoid tissues (tonsil, LNs, thymus, and spleen), or central nervous tissues (olfactory bulb and trigeminal ganglia) sampled throughout the animal studies (days 5, 10, and 35 pi). This study contributes to the understanding of the infection dynamics and tissue distribution of BoHV-4 following IN infection in calves. These results suggest that BoHV-4 SD16-38 used in our study has low pathogenicity in calves upon intranasal inoculation.


Subject(s)
Cattle Diseases , Herpesviridae Infections , Herpesvirus 1, Bovine , Herpesvirus 4, Bovine , Animals , Antibodies, Viral , Cattle , Herpesviridae Infections/veterinary , Herpesvirus 4, Bovine/genetics , Virus Shedding
10.
Phys Chem Chem Phys ; 25(1): 494-508, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36477071

ABSTRACT

An application of mechanical energy was explored as a new non-thermal method to drive H2 emission from undoped sodium alanate at room temperature. It was found that mild rubbing of NaAlH4 pellets under vacuum led to intensive and almost instantaneous gas emission. The dominating species in the emitted gases was H2 (>99%). Traces of mono- and polyalanes, NaAlH4 vapours, CO2 and other non-identified gases were registered. H2 emission involved several first-order processes, whose characteristic time constants ranged widely from 0.6 to 465 s. None of the dehydrogenation reactions could be connected to either the thermal effect of friction or the direct coupling of mechanical forces to the energy landscape of chemical reactions. In turn, it was suggested that the tribochemical reactions can be triggered by plastic deformation and shearing. A linked diffusion-wear model of NaAlH4 triboinduced dehydrogenation, which consistently explains all empirical findings, was put forward.

11.
Analyst ; 146(24): 7653-7669, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34806723

ABSTRACT

Pharmaceutical effluents are a serious environmental issue, which require to be treated by a suitable technique; thus, the electrochemical process is actively considered as a viable method for the treatment. In this work, new carbon paste electrodes (CPEs) were fabricated by compressing gold and silver nanoparticles (NPs), namely, CPE/Ag NPs, CPE/Au NPs, and CPE/Ag/Au NPs and then completely characterized by different analytical methods. The performance of the electrodes was studied after determining their surface area (×10-6 cm2) as 4.17, 5.05, 5.27, and 5.12, producing high anodic currents for K4[Fe(CN)6] compared to the commercial electrode. This agrees with the results of impedance study, where the electron transfer rate constants (kapp, ×10-3 cm s-1) were determined to be 28.7, 42.6, 41.0, and 101.4 for CPE, CPE/Ag NPs, CPE/Au NPs, and CPE/Ag/Au NPs, respectively, through the Bode plot-phase shifts. This is consistent with the charge transfer resistance (RCT, Ω), resulting as 171 for CPE/Ag/Au NPs < 395 for CPE/Ag NPs < 427 for CPE/Au NPs and < 742 for CPE. Therefore, these electrodes were employed to detect trimethoprim (TMP) since metallic NPs contribute good crystallinity, stability, conduciveness, and surface plasmon resonance to the CPE, convalescing the sensitivity; comprehensively, they were applied for its detection in real water and human urine samples, and the limit of detection (LOD) was as low as 0.026, 0.032, and 0.026 µmol L-1 for CPE/Ag NPs, CPE/Au NPs, and CPE/Ag/Au NPs, respectively. In contrast, unmodified CPE was unable to detect TMP due to the lack of efficiency. The developed technique shows excellent electrochemical recovery of 92.3 and 97.1% in the urine sample. Density functional theory (DFT) was used to explain the impact of the metallic center in graphite through density of states (DOS).


Subject(s)
Metal Nanoparticles , Electrodes , Gold , Humans , Models, Theoretical , Silver , Trimethoprim
12.
Arch Virol ; 166(4): 1163-1170, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33554289

ABSTRACT

The envelope glycoprotein E2 of pestiviruses is a major target for neutralizing antibodies. In this study, we analyzed the E2 DA domain of 43 pestiviruses from Southern Brazil. The isolates were identified as Bovine viral diarrhea virus (BVDV) subtypes 1a and 1b or BVDV-2b. Compared to reference strains, the BVDV-1 and -2 isolates had four and two mutations in the DA domain, respectively. All BVDV-2 isolates had a deletion of residues 724 and 725. All mutated amino acids in the BVDV isolates had the same aa substitution, and all were in previously identified antibody binding sites. It is possible that an immunity-mediated selection is acting on the pestiviruses circulating in Southern Brazil.


Subject(s)
Diarrhea Viruses, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/isolation & purification , Viral Envelope Proteins/genetics , Animals , Antigens, Viral/genetics , Binding Sites, Antibody/genetics , Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Bovine Virus Diarrhea-Mucosal Disease/virology , Brazil/epidemiology , Cattle , Diarrhea Viruses, Bovine Viral/classification , Diarrhea Viruses, Bovine Viral/immunology , Mutation , Phylogeny , RNA, Viral/genetics , Viral Envelope Proteins/immunology
13.
Eur Heart J ; 41(37): 3549-3560, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33080003

ABSTRACT

AIMS: Acute coronary syndromes with intact fibrous cap (IFC-ACS), i.e. caused by coronary plaque erosion, account for approximately one-third of ACS. However, the underlying pathophysiological mechanisms as compared with ACS caused by plaque rupture (RFC-ACS) remain largely undefined. The prospective translational OPTICO-ACS study programme investigates for the first time the microenvironment of ACS-causing culprit lesions (CL) with intact fibrous cap by molecular high-resolution intracoronary imaging and simultaneous local immunological phenotyping. METHODS AND RESULTS: The CL of 170 consecutive ACS patients were investigated by optical coherence tomography (OCT) and simultaneous immunophenotyping by flow cytometric analysis as well as by effector molecule concentration measurements across the culprit lesion gradient (ratio local/systemic levels). Within the study cohort, IFC caused 24.6% of ACS while RFC-ACS caused 75.4% as determined and validated by two independent OCT core laboratories. The IFC-CL were characterized by lower lipid content, less calcification, a thicker overlying fibrous cap, and largely localized near a coronary bifurcation as compared with RFC-CL. The microenvironment of IFC-ACS lesions demonstrated selective enrichment in both CD4+ and CD8+ T-lymphocytes (+8.1% and +11.2%, respectively, both P < 0.05) as compared with RFC-ACS lesions. T-cell-associated extracellular circulating microvesicles (MV) were more pronounced in IFC-ACS lesions and a significantly higher amount of CD8+ T-lymphocytes was detectable in thrombi aspirated from IFC-culprit sites. Furthermore, IFC-ACS lesions showed increased levels of the T-cell effector molecules granzyme A (+22.4%), perforin (+58.8%), and granulysin (+75.4%) as compared with RFC plaques (P < 0.005). Endothelial cells subjected to culture in disturbed laminar flow conditions, i.e. to simulate coronary flow near a bifurcation, demonstrated an enhanced adhesion of CD8+T cells. Finally, both CD8+T cells and their cytotoxic effector molecules caused endothelial cell death, a key potential pathophysiological mechanism in IFC-ACS. CONCLUSIONS: The OPTICO-ACS study emphasizes a novel mechanism in the pathogenesis of IFC-ACS, favouring participation of the adaptive immune system, particularly CD4+ and CD8+ T-cells and their effector molecules. The different immune signatures identified in this study advance the understanding of coronary plaque progression and may provide a basis for future development of personalized therapeutic approaches to ACS with IFC. TRIAL REGISTRATION: The study was registered at clinicalTrials.gov (NCT03129503).


Subject(s)
Acute Coronary Syndrome , Coronary Artery Disease , Plaque, Atherosclerotic , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Coronary Vessels/diagnostic imaging , Endothelial Cells , Humans , Plaque, Atherosclerotic/diagnostic imaging , Prospective Studies , Rupture, Spontaneous , Tomography, Optical Coherence
14.
Microb Pathog ; 149: 104497, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32910985

ABSTRACT

Diphtheric aspergillosis tracheitis is an uncommon syndrome described in human pathology, usually associated with immunosuppression in the affected individuals. Interestingly, no comparative/equivalent cases were found in domestic animals. This report describes the pathological and mycological findings associated with diphtheric aspergillosis tracheitis in an immunocompromised calf. The main pathological findings were diphtheric tracheitis and rhinitis, and necrotizing ruminitis associated with intralesional septate, acute branching fungal hyphae consistent with Aspergillus spp. Mycological culture and isolation confirmed the fungal hyphae as A. fumigatus due to characteristic features. Immunohistochemistry (IHC) assays identified intralesional antigens of bovine viral diarrhea virus (BVDV) and malignant catarrhal fever virus (MCFV) at the trachea and small intestine; IHC detected intralesional antigens of bovine alphaherpesvirus 1 (BoHV-1) only at the trachea. These findings confirmed the simultaneous occurrence of A. fumigatus with concomitant infections due to BVDV, MCFV, and BoHV-1 in this calf. Since ovine gammaherpesvirus-2 (OvHV-2) is the cause of MCF in Brail, it is likely that the intralesional MCFV antigens identified were those of OvHV-2. In this case, disseminated aspergillosis was probably associated with the undeveloped immunological status of the calf that was further impaired due to the combined immunodepressive effects of BVDV and BoHV-1 infections. Although BVDV and BoHV-1 are infectious disease pathogens frequently associated with the development of bovine respiratory disease (BRD) in feedlot and dairy cattle, the identification of intralesional OvHV-2-like antigens in several parts of the lungs suggest that this MCFV also played a role in the BRD-associated lesions identified in this calf.


Subject(s)
Aspergillosis , Diarrhea Viruses, Bovine Viral , Herpesvirus 1, Bovine , Tracheitis , Virus Diseases , Animals , Aspergillosis/complications , Aspergillosis/veterinary , Cattle , Sheep , Tracheitis/complications , Tracheitis/veterinary
15.
Pharm Res ; 37(10): 195, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32944793

ABSTRACT

PURPOSE: Design imiquimod-loaded chitosan nanocapsules for transdermal delivery and evaluate the depth of imiquimod transdermal absorption as well as the kinetics of this absorption using Raman Microscopy, an innovative strategy to evaluate transdermal absorption. This nanovehicle included Compritol 888ATO®, a novel excipient for formulating nanosystems whose administration through the skin has not been studied until now. METHODS: Nanocapsules were made by solvent displacement method and their physicochemical properties was measured by DLS and laser-Doppler. For transdermal experiments, newborn pig skin was used. The Raman spectra were obtained using a laser excitation source at 532 nm and a 20/50X oil immersion objective. RESULTS: The designed nanocapsules, presented nanometric size (180 nm), a polydispersity index <0.2 and a zeta potential +17. The controlled release effect of Compritol was observed, with the finding that half of the drug was released at 24 h in comparison with control (p < 0.05). It was verified through Raman microscopy that imiquimod transdermal penetration is dynamic, the nanocapsules take around 50 min to penetrate the stratum corneum and 24 h after transdermal administration, the drug was in the inner layers of the skin. CONCLUSIONS: This study demonstrated the utility of Raman Microscopy to evaluate the drugs transdermal penetration of in the different layers of the skin. Graphical Abstract New imiquimod nanocapsules: evaluation of their skin absorption by Raman Microscopy and effect of the compritol 888ATO® in the imiquimod release profile.


Subject(s)
Chitosan/pharmacokinetics , Drug Delivery Systems/methods , Fatty Acids/pharmacokinetics , Imiquimod/pharmacokinetics , Nanocapsules/administration & dosage , Skin/metabolism , Administration, Cutaneous , Animals , Chitosan/administration & dosage , Chitosan/chemistry , Fatty Acids/administration & dosage , Fatty Acids/chemistry , Imiquimod/administration & dosage , Imiquimod/chemistry , Nanocapsules/chemistry , Nonlinear Optical Microscopy/methods , Skin Absorption , Swine
17.
PLoS Pathog ; 13(8): e1006561, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28787456

ABSTRACT

Poxviruses have evolved unique proteins and mechanisms to counteract the nuclear factor κB (NF-κB) signaling pathway, which is an essential regulatory pathway of host innate immune responses. Here, we describe a NF-κB inhibitory virion protein of orf virus (ORFV), ORFV073, which functions very early in infected cells. Infection with ORFV073 gene deletion virus (OV-IA82Δ073) led to increased accumulation of NF-κB essential modulator (NEMO), marked phosphorylation of IκB kinase (IKK) subunits IKKα and IKKß, IκBα and NF-κB subunit p65 (NF-κB-p65), and to early nuclear translocation of NF-κB-p65 in virus-infected cells (≤ 30 min post infection). Expression of ORFV073 alone was sufficient to inhibit TNFα induced activation of the NF-κB signaling in uninfected cells. Consistent with observed inhibition of IKK complex activation, ORFV073 interacted with the regulatory subunit of the IKK complex NEMO. Infection of sheep with OV-IA82Δ073 led to virus attenuation, indicating that ORFV073 is a virulence determinant in the natural host. Notably, ORFV073 represents the first poxviral virion-associated NF-κB inhibitor described, highlighting the significance of viral inhibition of NF-κB signaling very early in infection.


Subject(s)
Ecthyma, Contagious/virology , Immune Evasion/physiology , NF-kappa B/immunology , Orf virus/pathogenicity , Virion/immunology , Animals , Ecthyma, Contagious/immunology , HeLa Cells , Humans , Immunoprecipitation , Orf virus/immunology , Orf virus/metabolism , Real-Time Polymerase Chain Reaction , Sheep , Signal Transduction/immunology , Viral Proteins/immunology , Virulence/physiology
18.
Microb Pathog ; 136: 103663, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31404631

ABSTRACT

Caprine alphaherpesvirus 1 (CpHV-1) is a worldwide pathogen of goats and is closely related to Bovine alphaherpevirus 1 (BoHV-1). We herein studied the antigenic relationships of CpHV-1 with BoHV-1 and investigated the pathogenesis of CpHV-1 in kids and calves. Monoclonal antibody reactivity revealed that CpHV-1 and BoHV-1 share immunogenic epitopes in the major envelope glycoproteins gB, gC and gD. The antigenic relationship was further demonstrated by virus-neutralizing assays, in which CpHV-1 and BoHV-1 antisera presented varied degrees of cross-neutralization against the respective heterologous viruses. Although cross-neutralization was observed between both viruses and the heterologous antisera, BoHV-1 antisera neutralized CpHV-1 with higher efficiency than CpHV-1 antisera neutralized BoHV-1. Hence, the antigenic cross-reactivity between CpHV-1 and BoHV-1 should be considered upon serologic testing of goats and cattle in regions where the two viruses co-circulate. Intranasal (IN) inoculation of CpHV-1 (WI13-46 isolate) in seven seronegative kids resulted in efficient viral replication in the respiratory tract. Additionally, mild to moderate systemic and respiratory signs were observed, including apathy, hyperthermia, nasal discharge and respiratory distress. Dexamethasone administration to the inoculated kids between days 36 and 40 pi did not result in virus shedding in nasal secretions. However, latent infection had been established, as evidenced by the detection of CpHV-1 DNA in trigeminal ganglia and olfactory bulbs of kids euthanized at day 67 pi. Contrasting with the outcome of infection in kids, IN inoculation of CpHV-1 in calves did not result in productive infection as no virus replication or shedding were detected, and the animals did not develop clinical signs nor seroconverted. The animal experiments demonstrated that CpHV-1 was able to produce respiratory disease in kids, but did not replicate to detectable levels in calves.


Subject(s)
Antigens, Viral/immunology , Cattle Diseases/pathology , Cattle Diseases/virology , Goat Diseases/pathology , Goat Diseases/virology , Herpesviridae Infections/veterinary , Varicellovirus/immunology , Animals , Animals, Newborn , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cattle , Cross Reactions , Epitopes/immunology , Goats , Herpesviridae Infections/pathology , Herpesviridae Infections/virology , Varicellovirus/classification
19.
Arch Virol ; 164(5): 1361-1369, 2019 May.
Article in English | MEDLINE | ID: mdl-30859474

ABSTRACT

Carnivore protoparvovirus 1 (canine parvovirus 2, CPV-2) has undergone a rapid evolution through mutations in the capsid protein VP2, giving rise to variants associated with unique clinicopathological and immunological features. VP2 is a major capsid protein involved in key steps of virus biology, including interactions with cellular receptors and with the immune system. This study analyzed the complete VP2 coding sequence of 38 CPV-2 isolates obtained from dogs with clinical parvovirosis in southern Brazil. Amplicons encompassing the whole VP2 coding region were subjected to nucleotide sequencing, and predicted amino acid sequences were analyzed to identify molecular markers of viral variants. Viral variants were classified as CPV-2a, -2b or -2c based on the presence of the amino acid Asn, Asp or Glu, respectively, at VP2 residue 426. Amino acid sequence analysis identified 20 CPV-2c and four CPV-2b isolates. Eleven viruses were identified as New CPV-2a, two as New CPV-2b, and one resembled the original CPV-2 and was designated CPV-2-like. In addition to the mutation at amino acid 426 of VP2, new 2a/2b variants containing a Ser297Ala mutation at residue 297 were identified. CPV-2-like samples contained some mutations that were also present in the original CPV-2 isolate, including as Leu, Thr, Ala and Asp at residues 87, 101, 300 and 305, respectively. The New CPV-2a isolates had three additional mutations (Phe267Tyr, Tyr324Ile and Thr440Ala) associated with selective pressure and development of disease in vaccinated dogs. The resemblance of the CPV-2-like isolate to CPV-2 suggests reemergence of CPV-2 and/or evolution from vaccine strains. Phylogenetic analysis grouped the variants with their respective reference strains, in general, according to amino acid changes. These results demonstrate the high VP2 diversity of CPV circulating in dogs in southern Brazil and indicate the emergence of new viral variants that differ markedly from the current vaccine strains.


Subject(s)
Capsid Proteins/genetics , Dog Diseases/virology , Genetic Variation/genetics , Parvoviridae Infections/veterinary , Parvovirus, Canine/genetics , Amino Acid Sequence , Amino Acid Substitution/genetics , Animals , Base Sequence , Brazil , DNA, Viral/genetics , Dogs , Parvovirus, Canine/classification , Parvovirus, Canine/isolation & purification , Phylogeny , Protein Isoforms/genetics , Sequence Analysis, DNA , Vaccination
20.
Nanotechnology ; 29(2): 025603, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29160237

ABSTRACT

This work investigates the growth of B-C-N layers by chemical vapor deposition using methylamine borane (MeAB) as the single-source precursor. MeAB has been synthesized and characterized, paying particular attention to the analysis of its thermolysis products, which are the gaseous precursors for B-C-N growth. Samples have been grown on Cu foils and transferred onto different substrates for their morphological, structural, chemical, electronic and optical characterizations. The results of these characterizations indicate a segregation of h-BN and graphene-like (Gr) domains. However, there is an important presence of B and N interactions with C at the Gr borders, and of C interacting at the h-BN-edges, respectively, in the obtained nano-layers. In particular, there is a significant presence of C-N bonds, at Gr/h-BN borders and in the form of N doping of Gr domains. The overall B:C:N contents in the layers is close to 1:3:1.5. A careful analysis of the optical bandgap determination of the obtained B-C-N layers is presented, discussed and compared with previous seminal works with samples of similar composition.

SELECTION OF CITATIONS
SEARCH DETAIL