Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Int J Biometeorol ; 67(10): 1607-1617, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37526762

ABSTRACT

Plants have always been able to adapt to climate change by reacting through various responses, mainly at the phenological level. The aim of this work is to investigate the behavior of specific tree species located in two phenological gardens in central Italy in relation to the temperature increases recorded in recent years. Specifically, four main phenological phases, BBCH_11, BBCH_19, BBCH_91, and BBCH_65, were monitored during a 14-year time period. The data of the weeks corresponding to the first appearance of each phenological phase and the respective heat accumulations for each species were cross-referenced with the meteorological data recorded by the stations in the two considered areas. Based on average temperature, calculated over reference periods, the species were divided by creating "warm" year groups and "cold" year groups so as to better highlight any differences in the behavior of the same species. In addition, a strong correlation was shown between the maximum temperatures in February and the advances of phenological phases BBCH_11 and BBCH_65. Most of the tree species have shown strong adaptation to climate warming, changing the period of occurrence of the phases themselves.


Subject(s)
Gardens , Trees , Temperature , Seasons , Italy , Climate Change
2.
Environ Monit Assess ; 195(1): 118, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36396879

ABSTRACT

The objective of this work was to investigate the potential ecosystem services of 16 fruit trees to plan and manage more efficiently "Urban Forest," increasing also the resilience of cities to climate change. We evaluated the potential capacity of PM10 absorption, the storage of CO2 from the atmosphere, and the cooling of the environment through shading by the crown and through evapotranspiration. We observed that some species, such as Morus nigra, Juglans regia, Pyrus communis, and Cydonia oblonga, are able to store a higher quantity of CO2 than others over a period of 50 years, respectively, of 2.40 tons, 2.33 tons, 1.51 tons, and 0.96 tons. Ficus carica, Juglans regia, and Morus nigra were relevant for PM10 absorption, since they were able to absorb, referring to the year 2019, 146.4 gr/tree, 195.6 gr/tree, and 143.1 gr/tree, respectively. Results showed that these ecosystem functions depend principally on the morphological characteristics of the individuals: their height, DBH, expansion of their crowns, and characteristics of the foliage system.


Subject(s)
Ecosystem , Fruit , Carbon Dioxide , Environmental Monitoring , Trees
3.
Environ Monit Assess ; 192(11): 737, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33128082

ABSTRACT

In order to estimate the impact of climate change on the phenological parameters and to compare them with the historical record, a decision support system (DSS) has been applied employing a Phenological Modelling Platform. Biological observations of two willow species (Salix acutifolia and smithiana Willd) in 3 gardens at different altitudes located in Central Italy were utilized to identify suitable phenological models related to four main vegetative phase timings (BBCH11, BBCH91, BBCH 94, BBCH95), and male full flowering (BBCH 65) clearly identifiable in these species. The present investigation identifies the best phenological models for the main phenophases allowing their practical application as real-time monitoring and plant development prediction tools. Sigmoid model revealed high performances in simulating spring vegetative phases, BBCH11 (First leaves unfolded), and BBCH91 (Shoot and foliage growth completed). Salix acutifolia Willd. development appeared to be more related to temperature amount interpreted by phenological models in comparison to Salix smithiana Willd. above all during spring (BBCH11 and 91), probably due to a different grade of phenotypic plasticity between the 2 considered species.


Subject(s)
Salix , Altitude , Climate Change , Environmental Monitoring , Italy , Seasons , Temperature
4.
Sensors (Basel) ; 19(17)2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31443346

ABSTRACT

Artefact conditions need to be continuously monitored to avoid degradation effects naturally caused by time and public exploitation in order to increase the value of cultural assets. In this way, the atmospheric analysis of both biological and chemical pollutants potentially present inside conservation environments represents valid support for the adoption of preventive conservation actions by evaluating periodically the presence of risk for the same artefacts. The aim of the present study was to analyze the fungal particles, potentially biodeteriogen, through aerobiological volumetric monitoring, particularly inside valuable historical, artistic, and cultural sites. Different exposition and conservation typologies of the artefacts with different flows of visitors were considered. The applied methodologies have furnished a reliable description of biological air pollution due to the presence of fungal spores-moreover, they have allowed for the prevention of risk situations and the measurement of their evolution in order to limit degradation processes. Through aerobiological monitoring, it was possible to provide important indications for interventions of prevention, conservation and restoration of cultural heritage in indoor environments.


Subject(s)
Air Pollutants/isolation & purification , Environmental Monitoring/methods , Spores, Fungal/growth & development , Air Pollution/prevention & control , Fungi/growth & development , Humans
5.
Int J Biometeorol ; 59(5): 629-41, 2015 May.
Article in English | MEDLINE | ID: mdl-25060840

ABSTRACT

The aim of the present study was to develop pheno-meteorological models to explain and forecast the main olive flowering phenological phases within the Mediterranean basin, across a latitudinal and longitudinal gradient that includes Tunisia, Spain, and Italy. To analyze the aerobiological sampling points, study periods from 13 years (1999-2011) to 19 years (1993-2011) were used. The forecasting models were constructed using partial least-squares regression, considering both the flowering start and full-flowering dates as dependent variables. The percentages of variance explained by the full-flowering models (mean 84 %) were greater than those explained by the flowering start models (mean 77 %). Moreover, given the time lag from the North African areas to the central Mediterranean areas in the main olive flowering dates, the regional full-flowering predictive models are proposed as the most useful to improve the knowledge of the influence of climate on the olive tree floral phenology. The meteorological parameters related to the previous autumn and both the winter and the spring seasons, and above all the temperatures, regulate the reproductive phenology of olive trees in the Mediterranean area. The mean anticipation of flowering start and full flowering for the future period from 2081 to 2100 was estimated at 10 and 12 days, respectively. One question can be raised: Will the olive trees located in the warmest areas be northward displaced or will they be able to adapt their physiology in response to the higher temperatures? The present study can be considered as an approach to design more detailed future bioclimate research.


Subject(s)
Climate , Ecosystem , Flowers/growth & development , Models, Statistical , Olea/growth & development , Seasons , Acclimatization/physiology , Computer Simulation , Mediterranean Region , Spain , Spatio-Temporal Analysis , Temperature
6.
Int J Biometeorol ; 58(5): 867-76, 2014 Jul.
Article in English | MEDLINE | ID: mdl-23591696

ABSTRACT

The main characteristics of the heat accumulation period and the possible existence of different types of biological response to the environment in different populations of olive through the Mediterranean region have been evaluated. Chilling curves to determine the start date of the heat accumulation period were constructed and evaluated. The results allow us to conclude that the northern olive populations have the greatest heat requirements for the development of their floral buds, and they need a period of time longer than olives in others areas to completely satisfy their biothermic requirements. The olive trees located in the warmest winter areas have a faster transition from endogenous to exogenous inhibition once the peak of chilling is met, and they show more rapid floral development. The lower heat requirements are due to better adaptation to warmer regions. Both the threshold temperature and the peak of flowering date are closely related to latitude. Different types of biological responses of olives to the environment were found. The adaptive capacity shown by the olive tree should be considered as a useful tool with which to study the effects of global climatic change on agro-ecosystems.


Subject(s)
Olea/growth & development , Acclimatization , Climate , Hot Temperature , Italy , Olea/physiology , Spain , Tunisia
7.
Environ Monit Assess ; 185(1): 877-90, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22466251

ABSTRACT

Recent studies have shown that there are many effects of climate change on aeroallergens, and thus on allergic diseases in humans. In the Mediterranean region, despite the importance of the olive tree for production, there is high allergenicity of olive pollen and related risks to human health. Aerobiological sampling techniques can be used to analyse the pollinosis phenomenon through determination of mean daily pollen concentrations per cubic metre of air. The present study was carried out from 1999 to 2008 in 16 olive-growing areas in Italy, to update the information on the pollinosis characteristics of Olea europaea in the study areas. The analysis of the average flowering season over the study period highlights a temporal scaling of pollen in the atmosphere that depends on the different climatic characteristics. This is mainly dependent on temperature, and in part, determined by latitude. Generally, the levels of O. europaea pollen in the atmosphere are higher from mid-April to the end of June, with the period of greatest risk to human health due to this olive pollen in this area currently limited primarily to the last 10 days of May. However, the pollen season can move, depending on the climate scenario considered, and data here can be used to determine potential time shifts in pollinosis that might cause more precocious asthma and allergy problems. The allergy season for this type of pollen might be significantly precocious in future decades (20-30 days earlier in the year), which will impact on the severity and duration of allergies attributable to olive tree pollen.


Subject(s)
Air Pollutants/analysis , Allergens/analysis , Climate Change , Environmental Monitoring , Olea , Rhinitis, Allergic, Seasonal/epidemiology , Air Pollution/statistics & numerical data , Atmosphere/chemistry , Humans , Italy , Seasons
8.
Int J Biometeorol ; 54(2): 151-63, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19802634

ABSTRACT

The aim of this study was to investigate the main climatic and biological trends related to olive flowering in central-southern Italy compared to those in Andalusia, Spain. Results since 1982 were compared for the two long-series monitoring areas of Cordoba and Perugia, and since 1992-1999 for the short-series areas. The relationship between climatic trends and the biological response of the olive, a widespread culture in the Mediterranean basin, were investigated. An aerobiological method involving capturing pollen released into the atmosphere was utilised as a bioindicator of flowering phenology. The study results confirm the strong relationship between flowering periods and spring temperature trends for the olive. Temperature during March, April and May was the parameter most related to flowering date in the study areas, particularly in Italy. In some cases we found a significant correlation between flowering and past autumn temperatures, probably due to their effect on floral bud dormancy induction, but this phenomenon appeared to be of minor importance in the studied areas. The phenological trend results show the continuous advance of flowering dates to the late 1990s, followed by a relatively stationary time series related to a short-term temperature fluctuation in the Mediterranean area. This latter period probably represents a mesoscale event forced by a macroscale event-the North Atlantic Oscillation. The results reveal that the trend towards increased temperatures, and the consequent flowering advance of some species, indicated some years ago is nowadays not as clear as was expected and should be confirmed over the next few years in the Mediterranean areas under investigation.


Subject(s)
Flowers/growth & development , Olea/growth & development , Seasons , Temperature , Climate , Ecosystem , Geography , Italy , Pollen/metabolism , Spain , Time Factors
9.
New Phytol ; 181(4): 860-870, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19140946

ABSTRACT

Here, we analyse the temporal signatures of ozone (O3)-induced hydrogen peroxide(H2O2) and nitric oxide (NO) and the role of the second messenger guanosine3',5'-cyclic monophosphate (cGMP) in transcriptional changes of genes diagnostic for biotic and abiotic stress responses. Within 90 min O3 induced H2O2 and NO peaks and we demonstrate that NO donors cause rapid H2O2 accumulation in tobacco (Nicotiana tabacum) leaf. Ozone also causes highly significant, late (> 2 h) and sustained cGMP increases, suggesting that the second messenger may not be required in all early (< 2 h) responses to O3,but is essential and sufficient for the induction of some O3-dependent pathways.This hypothesis was tested resolving the time course of O3-induced transcript accumulation of alternative oxidase (AOX1a), glutathione peroxidase (GPX),aminocyclopropancarboxylic acid synthase (ACS2) that is critical for the synthesis of ethylene, phenylalanine ammonia lyase (PALa) and the pathogenesis-related protein PR1a.The data show that early O3 and NO caused transcriptional activation of the scavenger encoding proteins AOX1a, GPX and the induction of ethylene production through ACS2 are cGMP independent. By contrast, the early response of PALa and the late response of PR1a show critical dependence on cGMP.


Subject(s)
Cyclic GMP/metabolism , Nicotiana/drug effects , Nitric Oxide/metabolism , Ozone/pharmacology , Plant Proteins/genetics , Hydrogen Peroxide/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , RNA, Plant/metabolism , Nicotiana/genetics , Nicotiana/metabolism
10.
Sex Plant Reprod ; 22(3): 109-19, 2009 Sep.
Article in English | MEDLINE | ID: mdl-20033432

ABSTRACT

In olive (Olea europaea L.), the formation of functionally staminate flowers rather than fully functional hermaphrodites is one of the major factors limiting fruit set, as flowers with aborted pistils are incapable of producing fruit. Studies conducted on various angiosperm species have shown a correlation between flower abortion and starch content. Thus, it is important to know if starch content plays a role in regulating pistil development in olive and if so, what mechanism regulates starch distribution. Cyto-histological observations of staminate and hermaphrodite olive flowers show that pistil development in staminate flowers is interrupted after the differentiation of the megaspore mother cell. At that stage, starch grains were only detected in the ovary, style and stigma of the hermaphrodite flowers. No starch was observed in the pistils of the staminate flowers. This finding suggests a tight correlation between starch content and pistil development. The secondary origin of starch within the flower is indicated by low chlorophyll content in the gynoecium, undetectable Rubisco activity in the pistils of these two kinds of flowers and by the ultrastructure of the plastids observed by transmission electron microscope analysis. The plastids have few thylakoid membranes and grana and in the staminate flowers appeared very similar to proplastids. Considering differences in starch content between staminate and hermaphrodite flowers and the secondary origin of the starch, differences in pistil development in the staminate and hermaphrodite flowers could be related to differences in the sink strength of these two types of flowers.


Subject(s)
Flowers/growth & development , Olea/growth & development , Starch/metabolism , Chlorophyll/metabolism , Flowers/anatomy & histology , Flowers/cytology , Flowers/metabolism , Olea/anatomy & histology , Olea/cytology , Olea/metabolism
11.
Plant Physiol Biochem ; 47(1): 42-8, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18990582

ABSTRACT

Artificial nitric oxide (NO) donors are widely used as tools to study the role of NO in plants. However, reliable and reproducible characterisation of metabolic responses induced by different NO donors is complicated by the variability of their NO release characteristics. The latter are affected by different physical and biological factors including temperature and light. Here we critically evaluate NO release characteristics of the donors sodium nitroprusside (SNP), S-nitrosoglutathione (GSNO) and nitric oxide synthase (NOS), both in vitro and in planta (Nicotiana tabacum L. cv. BelW3) and assess their effects on NO dependent processes such as the transcriptional regulation of the mitochondrial alternative oxidase gene (AOX1a), accumulation of H(2)O(2) and induction of cell death. We demonstrate that, contrary to NOS and SNP, GSNO is not an efficient NO generator in leaf tissue. Furthermore, spectrophotometric measurement of NO with a haemoglobin assay, rather than diaminofluorescein (DAF-FM) based detection, is best suited for the quantification of tissue NO. In spite of the different NO release signatures by SNP and NOS in tissue, the NO dependent responses examined were similar, suggesting that there is a critical threshold for the NO response.


Subject(s)
Nicotiana/metabolism , Nitric Oxide Donors/metabolism , Nitric Oxide/biosynthesis , Cell Death/physiology , Fluorometry , Hydrogen Peroxide/metabolism , Mitochondrial Proteins , Nitric Oxide/genetics , Nitric Oxide Synthase/metabolism , Nitroprusside/metabolism , Oxidants/metabolism , Oxidoreductases/metabolism , Plant Cells , Plant Leaves/metabolism , Plant Proteins , Plants/metabolism , S-Nitrosoglutathione/metabolism , Spectrophotometry
12.
Ann Agric Environ Med ; 12(1): 47-52, 2005.
Article in English | MEDLINE | ID: mdl-16028866

ABSTRACT

The Mediterranean Region is the major area devoted to olive tree crop, and therefore a study of olive flowering is of great interest for the European Community. On the other hand, olive pollen is one of the main causes of pollen allergy in the Mediterranean area. Olive flowering is affected by climatic factors such as temperature and photoperiod, which vary geographically in latitude and altitude. Temperature has been used to study those processes that lead to flowering in the olive tree. The aim of the present paper is firstly the comparison of the flowering full bloom dates in two Mediterranean areas, Sicily (Italy) and Cordoba (Spain), located in the same latitudinal band (37-38 degrees N) and to calculate the heat requirement until flowering by determination of different threshold temperatures and methods of heat accumulation. A delay of the full flowering dates in the Spanish compared with the Italian olive groves was observed. The most suitable threshold temperatures were carried out in a 7 degrees -15 degrees C range by considering the heat accumulation start on 1 January in each olive grove. In particular, some causes were indicated as responsible for the different threshold temperatures recorded in the 2 study areas: First, the different climatic conditions (continental and insular climate) secondly the different cultivars present in the olive groves.


Subject(s)
Climate , Flowers/growth & development , Olea/growth & development , Temperature , Adaptation, Physiological , Humans , Meteorological Concepts , Seasons , Sicily , Spain
13.
Environ Sci Process Impacts ; 16(7): 1716-25, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24824947

ABSTRACT

The study of microorganisms and biological particulate matter that transport passively through air is very important for an understanding of the real quality of air. Such monitoring is essential in several specific areas, such as public health, allergy studies, agronomy, indoor and outdoor conservation, and climate-change impact studies. Choosing the suitable monitoring method is an important step in aerobiological studies, so as to obtain reliable airborne data. In this study, we compare olive pollen data from two of the main air traps used in aerobiology, the Hirst and Cour air samplers, at three Tunisian sampling points, for 2009 to 2011. Moreover, a downscaling method to perform daily Cour air sampler data estimates is designed. While Hirst air samplers can offer daily, and even bi-hourly data, Cour air samplers provide data for longer discrete sampling periods, which limits their usefulness for daily monitoring. Higher quantities of olive pollen capture were generally detected for the Hirst air sampler, and a downscaling method that is developed in this study is used to model these differences. The effectiveness of this downscaling method is demonstrated, which allows the potential use of Cour air sampler data series. These results improve the information that new Cour data and, importantly, historical Cour databases can provide for the understanding of phenological dates, airborne pollination curves, and allergenicity levels of air.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Allergens/analysis , Environmental Monitoring/methods , Pollen , Particulate Matter/analysis , Tunisia
SELECTION OF CITATIONS
SEARCH DETAIL