Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Diabetes ; 55(6): 1792-9, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16731844

ABSTRACT

Impaired oxidative phosphorylation is suggested as a factor behind insulin resistance of skeletal muscle in type 2 diabetes. The role of oxidative phosphorylation in adipose tissue was elucidated from results of Affymetrix gene profiling in subcutaneous and visceral adipose tissue of eight nonobese healthy, eight obese healthy, and eight obese type 2 diabetic women. Downregulation of several genes in the electron transport chain was the most prominent finding in visceral fat of type 2 diabetic women independent of obesity, but the gene pattern was distinct from that previously reported in skeletal muscle in type 2 diabetes. A similar but much weaker effect was observed in subcutaneous fat. Tumor necrosis factor-alpha (TNF-alpha) is a major factor behind inflammation and insulin resistance in adipose tissue. TNF-alpha treatment decreased mRNA expression of electron transport chain genes and also inhibited fatty acid oxidation when differentiated human preadipocytes were treated with the cytokine for 48 h. Thus, type 2 diabetes is associated with a tissue- and region-specific downregulation of oxidative phosphorylation genes that is independent of obesity and at least in part mediated by TNF-alpha, suggesting that impaired oxidative phosphorylation of visceral adipose tissue has pathogenic importance for development of type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Gene Expression Profiling , Intra-Abdominal Fat/metabolism , Obesity/genetics , Adult , Cells, Cultured , Diabetes Mellitus, Type 2/metabolism , Down-Regulation/drug effects , Electron Transport/genetics , Fatty Acids/metabolism , Female , Humans , Intra-Abdominal Fat/drug effects , Middle Aged , Oligonucleotide Array Sequence Analysis , Oxidation-Reduction/drug effects , Tumor Necrosis Factor-alpha/pharmacology
2.
J Clin Endocrinol Metab ; 90(10): 5834-40, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16091493

ABSTRACT

CONTEXT: Low-grade inflammation in adipose tissue may contribute to insulin resistance in obesity. However, the roles of individual inflammatory mediators in adipose tissue are poorly understood. OBJECTIVES: The objective of this study was to determine which inflammation markers are most overexpressed at the gene level in adipose tissue in human obesity and how this relates to corresponding protein secretion. DESIGN: We examined gene expression profiles in 17 lean and 20 obese subjects. The secretory pattern of relevant corresponding proteins was examined in human s.c. adipose tissue or isolated fat cells in vitro and in vivo in several obese or lean cohorts. RESULTS: In ranking gene expression, defined pathways associated with obesity and immune and defense responses scored high. Among seven markedly overexpressed chemokines, only monocyte chemoattractant protein 1 (MCP1) was released from adipose tissue and isolated fat cells in vitro. In obesity, the secretion and expression of MCP1 in adipose tissue pieces were more than 6- and 2-fold increased, respectively, but there was no change in circulating MCP1 levels. There was no net release of MCP1, but there was a net release of leptin, in vivo from adipose tissue into the circulation. CONCLUSIONS: Obesity is associated with the increased expression of several chemokine genes in adipose tissue. However, only MCP1 is secreted into the extracellular space, where it primarily acts as a local factor, because little or no spillover into the circulation occurs. MCP1 influences the function of adipocytes, is a recruitment factor for macrophages, and may be a crucial link among chemokines between adipose tissue inflammation and insulin resistance.


Subject(s)
Adipose Tissue/physiopathology , Chemokine CCL2/physiology , Chemokines/physiology , Obesity/physiopathology , Adult , Body Mass Index , Chemokine CCL2/biosynthesis , Chemokines/biosynthesis , Female , Homeostasis/physiology , Humans , Immunity/physiology , Inflammation Mediators/physiology , Insulin Resistance , Male , Oligonucleotide Array Sequence Analysis , Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL