Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Clin Orthop Relat Res ; 476(12): 2442-2453, 2018 12.
Article in English | MEDLINE | ID: mdl-30427314

ABSTRACT

BACKGROUND: Orthopaedic wear particles activate the NLRP3 inflammasome to produce active interleukin 1ß (IL1ß). However, the NLRP3 inflammasome must be primed before it can be activated, and it is unknown whether wear particles induce priming. Toll-like receptors (TLRs) are thought to mediate particle bioactivity. It remains controversial whether pathogen-associated molecular patterns (PAMPs) and/or alarmins are responsible for TLR activation by wear particles. QUESTIONS/PURPOSES: (1) Does priming of the NLRP3 inflammasome by wear particles depend on adherent PAMPs? (2) Does priming of the NLRP3 inflammasome by wear particles depend on TLRs and TIRAP/Mal? (3) Does priming of the NLRP3 inflammasome by wear particles depend on cognate TLRs? (4) Does activation of the NLRP3 inflammasome by wear particles depend on adherent PAMPs? METHODS: Immortalized murine macrophages were stimulated by as-received titanium particles with adherent bacterial debris, endotoxin-free titanium particles, or titanium particles with adherent ultrapure lipopolysaccharide. To study priming, NLRP3 and IL1ß mRNA and IL1ß protein levels were assessed in wild-type, TLR4, TLR2, and TIRAP/Mal macrophages. To study activation, IL1ß protein secretion was assessed in wild-type macrophages preprimed with ultrapure lipopolysaccharide. RESULTS: Compared with titanium particles with adherent bacterial debris, endotoxin-free titanium particles induced 86% less NLRP3 mRNA (0.05 ± 0.03 versus 0.35 ± 0.01 NLRP3/GAPDH, p < 0.001) and 91% less IL1ß mRNA (0.02 ± 0.01 versus 0.22 ± 0.03 IL1ß/GAPDH, p < 0.001). ProIL1ß protein level was robustly increased in wild-type macrophages stimulated by particles with adherent PAMPs but was not detectably produced in macrophages stimulated by endotoxin-free particles. Adherence of ultrapure lipopolysaccharide to endotoxin-free particles reconstituted stimulation of NLRP3 and IL1ß mRNA. Particles with adherent bacterial debris induced 79% less NLRP3 mRNA (0.09 ± 0.004 versus 0.43 ± 0.13 NLRP3/GAPDH, p < 0.001) and 40% less IL1ß mRNA (0.09 ± 0.04 versus 0.15 ± 0.03 IL1ß/GAPDH, p = 0.005) in TLR4 macrophages than in wild-type. Similarly, those particles induced 49% less NLRP3 mRNA (0.22 ± 0.10 versus 0.43 ± 0.13 NLRP3/GAPDH, p = 0.004) and 47% less IL1ß mRNA (0.08 ± 0.02 versus 0.15 ± 0.03 IL1ß/GAPDH, p = 0.012) in TIRAP/Mal macrophages than in wild-type. Particles with adherent ultrapure lipopolysaccharide induced 96% less NLRP3 mRNA (0.012 ± 0.001 versus 0.27 ± 0.05 NLRP3/GAPDH, p = 0.003) and 91% less IL1ß mRNA (0.03 ± 0.01 versus 0.34 ± 0.07 IL1ß/GAPDH, p < 0.001) expression in TLR4 macrophages than in wild-type. In contrast, those particles did not induce less NLRP3 and IL1ß mRNA in TLR2 macrophages. IL1ß protein secretion was equivalently induced by particles with adherent bacterial debris or by endotoxin-free particles in a time-dependent manner in wild-type macrophages. For example, particles with adherent bacterial debris induced 99% ± 2% of maximal IL1ß secretion after 12 hours, whereas endotoxin-free particles induced 92% ± 11% (p > 0.5). CONCLUSIONS: This cell culture study showed that adherent PAMPs are required for priming of the NLRP3 inflammasome by wear particles and this process is dependent on their cognate TLRs and TIRAP/Mal. In contrast, activation of the NLRP3 inflammasome by titanium particles is not dependent on adherent PAMPs. Animal and implant retrieval studies are needed to determine whether wear particles have similar effects on the NLRP3 inflammasome in vivo. CLINICAL RELEVANCE: Our findings, together with recent findings that aseptic loosening associates with polymorphisms in the TIRAP/Mal locus, support that adherent PAMPs may contribute to aseptic loosening in patients undergoing arthroplasty.


Subject(s)
Cross-Priming/drug effects , Macrophages/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , Pathogen-Associated Molecular Pattern Molecules/metabolism , Titanium/pharmacology , Toll-Like Receptors/metabolism , Animals , Interleukin-1beta/metabolism , Mice
2.
J Orthop Res ; 39(3): 493-505, 2021 03.
Article in English | MEDLINE | ID: mdl-32779803

ABSTRACT

Wear particles from orthopedic implants cause aseptic loosening, the leading cause of implant revisions. The particles are phagocytosed by macrophages leading to activation of the nod-like receptor protein 3 (NLRP3) inflammasome and release of interleukin-1ß (IL-1ß) which then contributes to osteoclast differentiation and implant loosening. The mechanism of inflammasome activation by orthopedic particles is undetermined but other particles cause the cytosolic accumulation of the lysosomal cathepsin-family proteases which can activate the NLRP3 inflammasome. Here, we demonstrate that lysosome membrane disruption causes cathepsin release into the cytoplasm that drives both inflammasome activation and cell death but that these processes occur independently. Using wild-type and genetically-manipulated immortalized murine bone marrow derived macrophages and pharmacologic inhibitors, we found that NLRP3 and gasdermin D are required for particle-induced IL-1ß release but not for particle-induced cell death. In contrast, phagocytosis and lysosomal cathepsin release are critical for both IL-1ß release and cell death. Collectively, our findings identify the pan-cathepsin inhibitor Ca-074Me and the NLRP3 inflammasome inhibitor MCC950 as therapeutic interventions worth exploring in aseptic loosening of orthopedic implants. We also found that particle-induced activation of the NLRP3 inflammasome in pre-primed macrophages and cell death are not dependent on pathogen-associated molecular patterns adherent to the wear particles despite such pathogen-associated molecular patterns being critical for all other previously studied wear particle responses, including priming of the NLRP3 inflammasome.


Subject(s)
Cathepsins/metabolism , Lysosomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phagocytosis , Prosthesis Failure/etiology , Cell Death , Humans , Interleukin-1beta/metabolism , Pathogen-Associated Molecular Pattern Molecules , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL