Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Nature ; 585(7825): 390-396, 2020 09.
Article in English | MEDLINE | ID: mdl-32939067

ABSTRACT

The maritime expansion of Scandinavian populations during the Viking Age (about AD 750-1050) was a far-flung transformation in world history1,2. Here we sequenced the genomes of 442 humans from archaeological sites across Europe and Greenland (to a median depth of about 1×) to understand the global influence of this expansion. We find the Viking period involved gene flow into Scandinavia from the south and east. We observe genetic structure within Scandinavia, with diversity hotspots in the south and restricted gene flow within Scandinavia. We find evidence for a major influx of Danish ancestry into England; a Swedish influx into the Baltic; and Norwegian influx into Ireland, Iceland and Greenland. Additionally, we see substantial ancestry from elsewhere in Europe entering Scandinavia during the Viking Age. Our ancient DNA analysis also revealed that a Viking expedition included close family members. By comparing with modern populations, we find that pigmentation-associated loci have undergone strong population differentiation during the past millennium, and trace positively selected loci-including the lactase-persistence allele of LCT and alleles of ANKA that are associated with the immune response-in detail. We conclude that the Viking diaspora was characterized by substantial transregional engagement: distinct populations influenced the genomic makeup of different regions of Europe, and Scandinavia experienced increased contact with the rest of the continent.


Subject(s)
Gene Flow/genetics , Genetics, Population , Genome, Human/genetics , Genomics , Human Migration/history , Alleles , Datasets as Topic , England , Evolution, Molecular , Greenland , History, Medieval , Humans , Immunity/genetics , Ireland , Lactase/genetics , Lactase/metabolism , Male , Scandinavian and Nordic Countries , Selection, Genetic , Spatio-Temporal Analysis , Young Adult
2.
Nature ; 574(7776): 103-107, 2019 10.
Article in English | MEDLINE | ID: mdl-31511700

ABSTRACT

The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa1. However, the irreversible post-mortem degradation2 of ancient DNA has so far limited its recovery-outside permafrost areas-to specimens that are not older than approximately 0.5 million years (Myr)3. By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I4, and suggested the presence of protein residues in fossils of the Cretaceous period5-although with limited phylogenetic use6. In the absence of molecular evidence, the speciation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch7-9, using the proteome of dental enamel from a Stephanorhinus tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia)10. Molecular phylogenetic analyses place this Stephanorhinus as a sister group to the clade formed by the woolly rhinoceros (Coelodonta antiquitatis) and Merck's rhinoceros (Stephanorhinus kirchbergensis). We show that Coelodonta evolved from an early Stephanorhinus lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus Stephanorhinus is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel-which is the hardest tissue in vertebrates11, and is highly abundant in the fossil record-can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation.


Subject(s)
DNA, Ancient/analysis , Dental Enamel/metabolism , Fossils , Perissodactyla/classification , Perissodactyla/genetics , Phylogeny , Proteome/genetics , Proteomics , Amino Acid Motifs , Amino Acid Sequence , Animals , Bayes Theorem , History, Ancient , Humans , Male , Perissodactyla/metabolism , Phosphorylation/genetics , Proteome/analysis
4.
Commun Biol ; 5(1): 1262, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36400919

ABSTRACT

Recent improvements in the analysis of ancient biomolecules from human remains and associated dental calculus have provided new insights into the prehistoric diet and genetic diversity of our species. Here we present a multi-omics study, integrating metagenomic and proteomic analyses of dental calculus, and human ancient DNA analysis of the petrous bones of two post-Last Glacial Maximum (LGM) individuals from San Teodoro cave (Italy), to reconstruct their lifestyle and the post-LGM resettlement of Europe. Our analyses show genetic homogeneity in Sicily during the Palaeolithic, representing a hitherto unknown Italian genetic lineage within the previously identified Villabruna cluster. We argue that this lineage took refuge in Italy during the LGM, followed by a subsequent spread to central-western Europe. Analysis of dental calculus showed a diet rich in animal proteins which is also reflected on the oral microbiome composition. Our results demonstrate the power of this approach in the study of prehistoric humans and will enable future research to reach a more holistic understanding of the population dynamics and ecology.


Subject(s)
Microbiota , Proteomics , Humans , Animals , Dental Calculus , Diet , Genomics , Microbiota/genetics
5.
Curr Biol ; 32(21): 4743-4751.e6, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36182700

ABSTRACT

Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%-40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th-19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.


Subject(s)
Plague , Humans , Plague/epidemiology , Plague/genetics , Pandemics/history , Metagenomics , Genome, Bacterial , Phylogeny
6.
mSystems ; 6(6): e0131521, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34931883

ABSTRACT

Like modern metagenomics, ancient metagenomics is a highly data-rich discipline, with the added challenge that the DNA of interest is degraded and, depending on the sample type, in low abundance. This requires the application of specialized measures during molecular experiments and computational analyses. Furthermore, researchers often work with finite sample sizes, which impedes optimal experimental design and control of confounding factors, and with ethically sensitive samples necessitating the consideration of additional guidelines. In September 2020, early career researchers in the field of ancient metagenomics met (Standards, Precautions & Advances in Ancient Metagenomics 2 [SPAAM2] community meeting) to discuss the state of the field and how to address current challenges. Here, in an effort to bridge the gap between ancient and modern metagenomics, we highlight and reflect upon some common misconceptions, provide a brief overview of the challenges in our field, and point toward useful resources for potential reviewers and newcomers to the field.

7.
Philos Trans R Soc Lond B Biol Sci ; 375(1812): 20190584, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33012227

ABSTRACT

Mineralized dental plaque (calculus) has proven to be an excellent source of ancient biomolecules. Here we present a Mycobacterium leprae genome (6.6-fold), the causative agent of leprosy, recovered via shotgun sequencing of sixteenth-century human dental calculus from an individual from Trondheim, Norway. When phylogenetically placed, this genome falls in branch 3I among the diversity of other contemporary ancient strains from Northern Europe. Moreover, ancient mycobacterial peptides were retrieved via mass spectrometry-based proteomics, further validating the presence of the pathogen. Mycobacterium leprae can readily be detected in the oral cavity and associated mucosal membranes, which likely contributed to it being incorporated into this individual's dental calculus. This individual showed some possible, but not definitive, evidence of skeletal lesions associated with early-stage leprosy. This study is the first known example of successful multi-omics retrieval of M. leprae from archaeological dental calculus. Furthermore, we offer new insights into dental calculus as an alternative sample source to bones or teeth for detecting and molecularly characterizing M. leprae in individuals from the archaeological record. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.


Subject(s)
DNA, Ancient/analysis , Dental Calculus/history , Genome, Bacterial , Leprosy/history , Mycobacterium leprae/genetics , Adult , Archaeology , Dental Calculus/microbiology , Female , High-Throughput Nucleotide Sequencing , History, 16th Century , Humans , Leprosy/microbiology , Middle Aged , Norway , Sequence Analysis, DNA
8.
Nat Commun ; 10(1): 5520, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31848342

ABSTRACT

The rise of ancient genomics has revolutionised our understanding of human prehistory but this work depends on the availability of suitable samples. Here we present a complete ancient human genome and oral microbiome sequenced from a 5700 year-old piece of chewed birch pitch from Denmark. We sequence the human genome to an average depth of 2.3× and find that the individual who chewed the pitch was female and that she was genetically more closely related to western hunter-gatherers from mainland Europe than hunter-gatherers from central Scandinavia. We also find that she likely had dark skin, dark brown hair and blue eyes. In addition, we identify DNA fragments from several bacterial and viral taxa, including Epstein-Barr virus, as well as animal and plant DNA, which may have derived from a recent meal. The results highlight the potential of chewed birch pitch as a source of ancient DNA.


Subject(s)
Betula/physiology , DNA, Ancient/analysis , Genome, Human , Microbiota/genetics , Mouth/microbiology , Animals , DNA, Bacterial/analysis , Denmark , Geography , Humans , Phenotype , Radiometric Dating , Sex Determination Analysis , Time Factors
9.
Nat Commun ; 9(1): 4744, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30459334

ABSTRACT

The composition of ancient oral microbiomes has recently become accessible owing to advanced biomolecular methods such as metagenomics and metaproteomics, but the utility of metaproteomics for such analyses is less explored. Here, we use quantitative metaproteomics to characterize the dental calculus associated with the remains of 21 humans retrieved during the archeological excavation of the medieval (ca. 1100-1450 CE) cemetery of Tjærby, Denmark. We identify 3671 protein groups, covering 220 bacterial species and 81 genera across all medieval samples. The metaproteome profiles of bacterial and human proteins suggest two distinct groups of archeological remains corresponding to health-predisposed and oral disease-susceptible individuals, which is supported by comparison to the calculus metaproteomes of healthy living individuals. Notably, the groupings identified by metaproteomics are not apparent from the bioarchaeological analysis, illustrating that quantitative metaproteomics has the potential to provide additional levels of molecular information about the oral health status of individuals from archeological contexts.


Subject(s)
Dental Calculus/microbiology , Health Status , Oral Health , Proteomics/methods , Adult , Archaeology/methods , Bacteria/classification , Bacterial Proteins/analysis , DNA, Ancient/analysis , DNA, Bacterial/analysis , Denmark , Dental Plaque/microbiology , Dietary Proteins , Female , Humans , Male , Metagenomics/methods , Microbiota/genetics , Middle Aged
10.
Curr Biol ; 28(15): 2420-2428.e10, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30033331

ABSTRACT

Salmonella enterica serovar Paratyphi C causes enteric (paratyphoid) fever in humans. Its presentation can range from asymptomatic infections of the blood stream to gastrointestinal or urinary tract infection or even a fatal septicemia [1]. Paratyphi C is very rare in Europe and North America except for occasional travelers from South and East Asia or Africa, where the disease is more common [2, 3]. However, early 20th-century observations in Eastern Europe [3, 4] suggest that Paratyphi C enteric fever may once have had a wide-ranging impact on human societies. Here, we describe a draft Paratyphi C genome (Ragna) recovered from the 800-year-old skeleton (SK152) of a young woman in Trondheim, Norway. Paratyphi C sequences were recovered from her teeth and bones, suggesting that she died of enteric fever and demonstrating that these bacteria have long caused invasive salmonellosis in Europeans. Comparative analyses against modern Salmonella genome sequences revealed that Paratyphi C is a clade within the Para C lineage, which also includes serovars Choleraesuis, Typhisuis, and Lomita. Although Paratyphi C only infects humans, Choleraesuis causes septicemia in pigs and boar [5] (and occasionally humans), and Typhisuis causes epidemic swine salmonellosis (chronic paratyphoid) in domestic pigs [2, 3]. These different host specificities likely evolved in Europe over the last ∼4,000 years since the time of their most recent common ancestor (tMRCA) and are possibly associated with the differential acquisitions of two genomic islands, SPI-6 and SPI-7. The tMRCAs of these bacterial clades coincide with the timing of pig domestication in Europe [6].


Subject(s)
DNA, Ancient/analysis , DNA, Bacterial/analysis , Genomic Instability , Salmonella enterica/genetics , Typhoid Fever/microbiology , Female , Genomic Islands , Humans , Norway
11.
R Soc Open Sci ; 4(6): 161004, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28680659

ABSTRACT

Ancient protein analysis provides clues to human life and diseases from ancient times. Here, we performed shotgun proteomics of human archeological bones for the first time, using rib bones from the Hitotsubashi site (AD 1657-1683) in Tokyo, called Edo in ancient times. The output data obtained were analysed using Gene Ontology and label-free quantification. We detected leucocyte-derived proteins, possibly originating from the bone marrow of the rib. Particularly prevalent and relatively high expression of eosinophil peroxidase suggests the influence of infectious diseases. This scenario is plausible, considering the overcrowding and unhygienic living conditions of the Edo city described in the historical literature. We also observed age-dependent differences in proteome profiles, particularly for proteins involved in developmental processes. Among them, alpha-2-HS-glycoprotein demonstrated a strong negative correlation with age. These results suggest that analysis of ancient proteins could provide a useful indicator of stress, disease, starvation, obesity and other kinds of physiological and pathological information.

SELECTION OF CITATIONS
SEARCH DETAIL