ABSTRACT
BACKGROUND: Solanum aculeastrum fruits are used by some cancer sufferers as a form of alternative treatment. Scientific literature is scarce concerning its anticancer activity, and thus the aim of the study was to assess the in vitro anticancer and P-glycoprotein inhibitory potential of extracts of S. aculeastrum fruits. Furthermore, assessment of the combinational effect with doxorubicin was also done. METHODS: The crude extract was prepared by ultrasonic maceration. Liquid-liquid extraction yielded one aqueous and two organic fractions. Bioactive constituents were isolated from the aqueous fraction by means of column chromatography, solid phase extraction and preparative thin-layer chromatography. Confirmation of bioactive constituent identity was done by nuclear magnetic resonance and ultra-performance liquid chromatography mass spectrometry. The crude extract and fractions were assessed for cytotoxicity and P-glycoprotein inhibition in both cancerous and non-cancerous cell lines using the sulforhodamine B and rhodamine-123 assays, respectively. RESULTS: Both the crude extract and aqueous fraction was cytotoxic to all cell lines, with the SH-SY5Y neuroblastoma cell line being most susceptible to exposure (IC50 = 10.72 µg/mL [crude], 17.21 µg/mL [aqueous]). Dose-dependent P-glycoprotein inhibition was observed for the crude extract (5.9 to 18.9-fold at 100 µg/mL) and aqueous fraction (2.9 to 21.2 at 100 µg/mL). The steroidal alkaloids solamargine and solanine were identified. While solanine was not bioactive, solamargine displayed an IC50 of 15.62 µg/mL, and 9.1-fold P-glycoprotein inhibition at 100 µg/mL against the SH-SY5Y cell line. Additive effects were noted for combinations of doxorubicin against the SH-SY5Y cell line. CONCLUSIONS: The crude extract and aqueous fraction displayed potent non-selective cytotoxicity and noteworthy P-glycoprotein inhibition. These effects were attributed to solamargine. P-glycoprotein inhibitory activity was only present at concentrations higher than those inducing cytotoxicity, and thus does not appear to be the likely mechanism for the enhancement of doxorubicin's cytotoxicity. Preliminary results suggest that non-selective cytotoxicity may hinder drug development, however, further assessment of the mode of cell death is necessary to determine the route forward.
Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Cell Survival/drug effects , Solanaceous Alkaloids/pharmacology , Solanum/chemistry , Antineoplastic Agents/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Doxorubicin/pharmacology , Drug Synergism , HumansABSTRACT
BACKGROUND: Monsonia angustifolia (Geraniaceae) is a medicinal plant traditionally used in South Africa to increase libido and to treat erectile dysfunction. METHODS: In-vivo aphrodisiac activities of the crude extracts of the plant prepared in water at 3, 30 and 300 mg/kg body weight were evaluated for 7 days using sildenafil citrate (Viagra) and 1% ethanol in distilled water as positive and negative controls respectively. Male rats were selected and monitored in each group for sexual behaviour by exposing them to sexually receptive females on days 1, 3 and 7 for 60 minutes each between 7:00 pm and 3:00 am. The following male sexual parameters were observed: Mount Frequency (MF), Intromission Frequency (IF), Mount Latency (ML), Intromission Latency (IL), Ejaculation Frequency (EF), Ejaculatory Latency (EL) and Post-Ejaculatory Interval (PEI). RESULTS: The administration of the extract resulted in significant increase (p < 0.05) in mount frequency, intromission frequency, ejaculation frequency, ejaculation latency and serum hormone concentrations. The computed indices of sexual behaviour such as erection, quick flips, long flips and total penile reflexes were also increased. However, the mount latency, intromission latency and post ejaculation interval were significantly decreased throughout the experimental period. The administration of 300 mg/kg body weight of the aqueous extract produced the best effects in all the parameters. CONCLUSION: Generally, the extract of Monsonia angustifolia produced pro-sexual stimulatory effects in the male rats especially when administered at 300 mg/kg body weight. The results validate the use of the plant by the indigenous people to increase libido and treat premature ejaculation and erectile dysfunction in males.
Subject(s)
Aphrodisiacs/pharmacology , Erectile Dysfunction/drug therapy , Magnoliopsida/chemistry , Plant Extracts/pharmacology , Animals , Ejaculation/drug effects , Female , Humans , Male , Penile Erection/drug effects , Plant Components, Aerial , Rats , Rats, Wistar , Sexual Behavior , Sexual Behavior, Animal/drug effects , Testosterone/bloodABSTRACT
Sesquiterpene lactones (STLs) are natural products that have potent antitrypanosomal activity in vitro and, in the case of cynaropicrin, also reduce parasitemia in the murine model of trypanosomiasis. To explore their structure-antitrypanosomal activity relationships, a set of 34 natural and semi-synthetic STLs and amino-STLs was tested in vitro against T. b. rhodesiense (which causes East African sleeping sickness) and mammalian cancer cells (rat bone myoblast L6 cells). It was found that the α-methylene-γ-lactone moiety is necessary for both antitrypanosomal effects and cytotoxicity. Antitrypanosomal selectivity is facilitated by 2-(hydroxymethyl)acrylate or 3,4-dihydroxy-2-methylenebutylate side chains, and by the presence of cyclopentenone rings. Semi-synthetic STL amines with morpholino and dimethylamino groups showed improved in vitro activity over the native STLs. The dimethylamino derivative of cynaropicrin was prepared and tested orally in the T. b. rhodesiense acute mouse model, where it showed reduced toxicity over cynaropicrin, but also lost antitrypanosomal activity.
Subject(s)
Lactones/chemistry , Lactones/pharmacology , Sesquiterpenes/chemistry , Structure-Activity Relationship , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Animals , Cell Line , Disease Models, Animal , Female , Lactones/toxicity , Mice , Parasitic Sensitivity Tests , Rats , Trypanocidal Agents/toxicity , Trypanosoma brucei rhodesiense/drug effects , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitologyABSTRACT
The mol-ecular structure of C18H28O4, (+)-diplodiatoxin, is described, whereby the absolute configuration of the structure of diplodiatoxin has been confirmed by single-crystal X-ray diffraction. Diplodiatoxin crystallizes in the chiral P43212 space group with one mol-ecule in the asymmetric unit.
ABSTRACT
A library of 206 extracts from selected South African plants was screened in vitro against a panel of protozoan parasites, Plasmodium falciparum, Trypanosoma brucei rhodesiense, and Leishmania donovani. A CH2Cl2/MeOH (1 : 1) extract of Abrus precatorius L. ssp. africanus strongly inhibited P. falciparum (98 %), T. b. rhodesiense (100 %), and L. donovani (76 %) when tested at a concentration of 10.0 µg/mL. The active constituents were tracked by HPLC-based activity profiling and isolated by preparative and semipreparative RP-HPLC chromatography. Structures were established by HR-ESIMS, and 1D and 2D NMR (1H, 13C, COSY, HMBC, HSQC, and NOE difference spectroscopy). Five compounds were obtained and identified as two isoflavan hydroquinones, abruquinone H (1) and abruquinone G (2), and three isoflavan quinones, abruquinone I (3), abruquinone B (4), and 7,8,3''5'-tetramethoxyisoflavan-1',4'-quinone (5). Compounds 1 and 3 were new natural products. The absolute configuration of compounds was determined by comparison of electronic circular dichroism spectra with calculated ECD data. Compounds 3 and 4 showed strong activity against T. b. rhodesiense (IC50 values of 0.30 and 0.16 µM, respectively) and good selectivity (selectivity indices of 73.7 and 50.5, respectively).
Subject(s)
Abrus/chemistry , Antiprotozoal Agents/pharmacology , Plasmodium falciparum/drug effects , Quinones/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Chromatography, High Pressure Liquid , Nuclear Magnetic Resonance, Biomolecular , Quinones/chemistry , Quinones/isolation & purificationABSTRACT
Two hundred and seven extracts were prepared from sixty plants from South Africa and screened for in vitro activity against Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani, and Plasmodium falciparum. For the 21 extracts which inhibited the growth of one or more parasites with more than 95 % at 10 µg/mL, the IC50 values against all four protozoal parasites and cytotoxic IC50 values against L6 myoblasts were determined. Amongst the most notable results are the activities of Psoralea pinnata (IC50 of 0.15 µg/mL), Schkuhria pinnata (2.04 µg/mL), and Vernonia mespilifolia (1.01 µg/mL) against Trypansoma brucei rhodesiense. HPLC-based activity profiling was used to identify the active constituents in the extracts, and the germacranolide sesquiterpene lactones schkuhrin I and II from S. pinnata, and cynaropicrin from V. mespilifolia were identified, with IC50 values of 0.9, 1.5, and 0.23 µM, respectively.
Subject(s)
Antiprotozoal Agents/pharmacology , Asteraceae/chemistry , Lactones/pharmacology , Plant Extracts/pharmacology , Sesquiterpenes, Germacrane/pharmacology , Sesquiterpenes/pharmacology , Vernonia/chemistry , Antimalarials/pharmacology , Humans , Inhibitory Concentration 50 , Lactones/analysis , Leishmania donovani/drug effects , Plant Extracts/chemistry , Plasmodium falciparum/drug effects , Sesquiterpenes/analysis , Sesquiterpenes, Germacrane/analysis , South Africa , Trypanocidal Agents/pharmacology , Trypanosoma brucei rhodesiense/drug effects , Trypanosoma cruzi/drug effectsABSTRACT
BACKGROUND: Aging is an inevitable process for all living organisms. During this process reactive oxygen species generation is increased which leads to the activation of hyaluronidase, collagenase and elastase, which can further contribute to skin aging. Four southern African medicinal plants; Clerodendrum glabrum, Schotia brachypetala, Psychotria capensis and Peltophorum africanum, were investigated to assess their anti-aging properties. METHODS: Anti-elastase, anti-collagenase and anti-hyaluronidase activities of twenty-eight samples, consisting of methanol and ethyl acetate extracts of the four plants, were determined using spectrophotometric methods. Radical scavenging activity was determined by the ability of the plant extracts to scavenge the ABTSâ¢+ radical. RESULTS: The majority of the samples in the anti-elastase assay and nine in the anti-collagenase assay showed more than 80% inhibition. The ethyl acetate extract of S. brachypetala bark and leaves of P. capensis inhibited elastase activity by more than 90%. The methanol extract of S. brachypetala bark contained the highest anti-hyaluronidase activity (75.13 ± 7.49%) whilst the ethyl acetate extract of P. africanum bark exhibited the highest antioxidant activity (IC50: 1.99 ± 0.23 µg/ml). CONCLUSION: The free radical scavenging activity and enzyme inhibitory activity of the plant extracts investigated suggests that they can help restore skin elasticity and thereby slow the wrinkling process. P. africanum was the plant with the most promising activity and will be subjected to further testing and isolation of the active compound/s.
Subject(s)
Aging/drug effects , Enzyme Inhibitors/analysis , Plant Extracts/analysis , Plants, Medicinal/chemistry , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Humans , Hyaluronoglucosaminidase/antagonists & inhibitors , Oxidation-Reduction , Pancreatic Elastase/antagonists & inhibitors , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , South AfricaABSTRACT
BACKGROUND: Athrixia phylicoides DC. (Asteraceae) is used medicinally in South Africa to treat a plethora of ailments, including heart problems, diabetes, diarrhoea, sores and infected wounds. It is also prepared in the form of a tea (hot decoction) taken as a refreshing, pleasant-tasting beverage with commercialization potential. METHODS: Extracts of the dried ground aerial parts were prepared using organic solvents (diethyl ether, dichloromethane/methanol, ethyl acetate and ethanol) and water. These extracts were subjected to HPLC, TLC and bioautography analysis with the aim of linking a range of peaks visualized in HPLC chromatography profiles to antibacterial and antifungal activity of the same extracts. RESULTS: HPLC revealed a group of compounds extracted by more than one solvent. Compounds identified include inositol, caffeic acid, quercetin, kaempferol, apigenin, hymenoxin and oleanolic acid. The organic extracts displayed similar TLC profiles, and bioautography indicated approximately five antibacterial compounds, but only two antifungal compounds in these extracts. Bioautography indicated that cold water extracted the least antimicrobial compounds. CONCLUSIONS: Several previously unknown compounds were identified in Athrixia phylicoides extracts, and bioautography indicated a number of antibacterial and antifungal compounds. There were notable differences in chemical composition and bioactivity between the organic and aqueous extracts. Further research is necessary to fully characterize the active components of the extracts.
Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Asteraceae/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Bacteria/drug effects , Chromatography, High Pressure Liquid/methods , Chromatography, Thin Layer , Fungi/drug effects , Hydrophobic and Hydrophilic Interactions , Microbial Sensitivity Tests , Plant Components, Aerial/chemistryABSTRACT
Plants of the Suregada Roxb. ex Rottler (formerly Gelonium Roxb. ex Willd) are utilized to treat various ailments, namely, hepatic, gum diseases, pyrexia, eczema, and venereal diseases. This review links the reported compounds to ethnomedicinal uses through pharmacological activities. The compounds possess anticancer, anti-allergic, antibacterial, anti-inflammatory, antioxidant, and anti-HIV properties. From the previous reports, 32 known species of the Suregada genus have been investigated morphologically, and nine were investigated for their phytochemistry and pharmacology. Phytochemistry, ethnomedicinal, and pharmacological uses of the other 23 Suregada species are not known and/or not reported. In this review, abietane diterpenoids are the main compounds expressed by the Suregada, accounting for 71 of the 114 reported compounds. Ten triterpenoids and sterols, one aliphatic, two lignans, five flavonoids, and twenty-one nitrogen-containing compounds have been reported from the genus.
ABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: Monsonia angustifolia is traditionally used to treat anthrax, heartburn, diarrhea, eye infections and hemorrhoids. Dodonaea angustifolia is frequently used as a treatment for dental pain, microbial infections and jungle fever. The two plant species were selected due to the presence of secondary metabolites such as coumarins, flavonoids, terpenoids, saponins and polyphenolics from the crude extracts, which exhibit pharmacological significance. The pure isolated compounds from the crude extracts are known for their diverse structures and interesting pharmacophores. AIM: To isolate and identify antibacterial and antifungal chemical constituents from Monsonia angustifolia and Dodonaea angustifolia plant extracts and evaluate the cytotoxicity of pure compounds from the crude extracts. MATERIALS AND METHODS: Extractives from M. angustifolia and D. angustifolia plants were isolated using chromatographic techniques and structures were elucidated based on NMR, IR and MS spectroscopic techniques. A microplate serial dilution method was used to evaluate the antibacterial activity of extracts and pure compounds against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and antifungal activity against Candida albicans and Cryptococcus neoformans. The cytotoxicity was determined using the 3-(4, 5-dimethylthiazol)-2, 5-diphenyl tetrazolium bromide (MTT) assay. RESULTS: The dichloromethane, ethyl acetate and methanol crude extracts from the plants exhibited significant inhibition of microbial growth. The phytochemical investigation of these active crude extracts led to the isolation of five pure active compounds, 5-methoxyjusticidin A (1), cis-phytyl diterpenoidal fatty acid ester (2), stigmasterol (3), ß-sitosterol (4) and 5-hydroxy-7,4'-dimethoxyflavone (5). Stigmasterol (3) showed good antifungal activity against Cryptococcus neoformans with a minimum inhibition concentration (MIC) of 25⯵g/mL and Candida albicans (MICâ¯=â¯50⯵g/mL). CONCLUSION: Compounds (1-5) isolated from Monsonia angustifolia and Dodonaea angustifolia showed antibacterial and antifungal activities and were non-toxic against Madin-Darby canine kidney (MDCK) cells and VERO monkey kidney (VERO) cells.
Subject(s)
Geraniaceae , Sapindaceae , Antifungal Agents/toxicity , Antifungal Agents/chemistry , Stigmasterol , Microbial Sensitivity Tests , Plant Extracts/toxicity , Plant Extracts/chemistry , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/chemistryABSTRACT
Bacterial secondary metabolites play a major role in the alleviation of diseases; however, the cytotoxicity of other metabolites cannot be ignored as such metabolites could be detrimental to human cells. Three Staphylococci strains Staphylococcus aureus, staphylococcus epidermidis and staphylococcus saprophyticus were used in the experiments. These strains are well known to cause hospital and community-acquired infections. Secondary metabolites from S. aureus isolated from milk of cows with clinical features of mastitis (swollen udders and the production of watery clotted milk), S. saprophyticus (ATCC 35552), and S. epidermidis (ATCC 51625) were exposed to a minimal medium then screened using Gas Chromatography High-Resolution Time-of-flight Mass Spectrometry (GC-HRTOF-MS) and identified with Nuclear Magnetic Resonance (NMR). From S. epidermidis, two compounds were isolated: oleamide and methyl palmitate; three from S. aureus, including fluoranthene, 3-methyl-2-phenyl-1H-pyrrole, and cyclo(L-Leu-L-Propyl); while S. saprophyticus yielded succinic acid, 1,2,6-hexantriol, veratramine, and 4-methyl-pentyl-amine. The secondary metabolites were tested for cytotoxicity using the Vero cell line. Fluoranthene exhibited toxicity with an LC50 of 0.0167 mg/mL to Vero cells, while the other metabolites did not. Methyl palmitate was the least toxic of all of the metabolites. The results imply that none of the compounds, except fluoranthene, pose any danger to human cells.
Subject(s)
Staphylococcal Infections , Staphylococcus , Chlorocebus aethiops , Female , Cattle , Humans , Animals , Staphylococcus/metabolism , Staphylococcus aureus , Vero Cells , Succinic Acid/metabolism , Staphylococcal Infections/microbiology , Milk/microbiology , Staphylococcus epidermidis , Amines , PyrrolesABSTRACT
There has been burgeoning interest in plant-based feed additives following restrictions placed on the use of antibiotic feed additives in many countries. Phytogenic feed additives are recommended to have a range of useful properties to support the growth and development of poultry to a similar level as that obtained by supplementing feed with antibiotics. The aim of this study was to evaluate the antibacterial, anti-lipoxygenase and antioxidant activity, and in vitro safety of fractions and isolated compounds from leaves of Senna singueana. Antibacterial activities of the fractions and isolated compounds were determined against a panel of bacteria using a two-fold serial microdilution assay and qualitative bioautography assays. Anti-lipoxygenase activity was evaluated using the ferrous oxidation-xylenol orange (FOX) method. Antioxidant activity was assessed qualitatively and quantitatively using radical scavenging assays. Dichloromethane and ethyl acetate fractions from solvent-solvent partitioning had the best antibacterial activity with MIC values ranging from 156 to 313 µg/ml. Fractions obtained from column chromatography had significant to weak antibacterial activity with MIC values ranging from 50 to 1,250 µg/ml. Bioautography showed clear bands of bacterial inhibition, indicating the presence of a number of active compounds in several fractions. The ethyl acetate fraction and all the tested column fractions had potent anti-lipoxygenase activity with IC50 values of ≤2.5 µg/ml which were lower than that of quercetin (positive control), indicating anti-inflammatory potential. The ethyl acetate fraction and several column fractions had powerful antioxidant activity with IC50 values of ≤5 µg/ml in the ABTS assay. Cytotoxicity values against Vero kidney cells ranged from LC50 = 40.0-989.3 µg/ml. Bioassay-guided fractionation led to the isolation and identification of a known bioactive compound, luteolin. S. singueana is a promising candidate for the development of poultry phytogenic feed additives.
ABSTRACT
A novel cycloartanol (1) and an acylated Sutherlandioside D (2) together with two known cycloartane derivatives, Sutherlandioside B (3) and Sutherlandioside A (4), were isolated from the aerial parts of Sutherlandia frutescens. The structures of these compounds were established by a combination of 1- and 2-D NMR techniques and further confirmed by high resolution ToF mass spectrometry (HRToFMS). Preliminary biological studies were also conducted to assess the activity of different plant extracts, fractions and compounds on cytokine expression. Compounds 1 and 2 prompted an increase in IL-6 expression while compound 4 showed a reduced IL-6 expression compared to the controls. Compound 1 is an effective suppressor of IL-10 expression. The plant compounds inhibited the expression of the two cytokines, IL-10 and TNFα. The results of the assays suggested that some components in the plant extract influence the immune system by suppressing the expression of IL-6, IL-10 and TNFα.
Subject(s)
Cytokines/metabolism , Fabaceae/chemistry , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Drug Evaluation, Preclinical , Fabaceae/metabolism , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Triterpenes/chemistryABSTRACT
No abstract available.
ABSTRACT
No abstract available.
ABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: There have been different methods proposed to prevent the sexual transmission of HIV-1 and many of them have centered on the use of anti-retrovirals as microbicides. Given that a large section of the African population still relies on herbal medicine, Lobostemon trigonus (L. trigonus), a traditionally used medicinal plant in South Africa to treat HIV-1 was further investigated for its potential as a natural microbicide to prevent the sexual transmission of HIV-1. METHODS: The aerial parts of L. trigonus were oven-dried at 80 °C, ground, extracted with boiling water for 30 min and then filtered. The aqueous extract produced was then bioassayed using different HIV-1 inhibition assays. The active components were purified and chemically profiled using ultra-performance liquid chromatography/quadrupole time-of flight mass spectrometry (UPLC-qTOF-MS). The mechanism of HIV-1 inhibition was determined by fusion arrest assay and time of addition assay. Molecular modelling and molecular dynamic simulations, using Schrödinger, were used to better understand the molecule's mechanism of entry inhibition by evaluating their docking affinity and stability against the gp120 of HIV-1. RESULTS: The aqueous extract of this plant had a broad spectrum of activity against different subtypes of the virus; neutralizing subtype A, B and C in the TZM-bl cells, with IC50 values ranging from 0.10 to 7.21 µg/mL. The extract was also inhibitory to the virus induced cytopathic effects in CEM-SS cells with an EC50 of 8.9 µg/mL. In addition, it inhibited infection in peripheral blood mononuclear cells (PBMC) and macrophages with IC50 values of 0.97 and 4.4 µg/mL, respectively. In the presence of vaginal and seminal simulants, and in human semen it retained its inhibitory activity albeit with a decrease in efficiency, by about 3-fold. Studies of the mode of action suggested that the extract blocked HIV-1 attachment to target cells. No toxicity was observed when the Lactobacilli strains, L. acidophilus, L. jensenii, and L. crispatus that populate the female genital tract were cultured in the presence of L. trigonus extract. UPLC-qTOF-MS analyses of the purified fraction of the extract, confirmed the presence of six compounds of which four were identified as rosmarinic acid, salvianolic acids B and C and lithospermic acid. The additional molecular dynamic simulations provided further insight into the entry inhibitory characteristics of salvianolic acid B against the HIV-1 gp120, with a stable pose being found within the CD4 binding site. CONCLUSION: The data suggests that the inhibitory effect of L. trigonus may be due to the presence of organic acids which are known to possess anti-HIV-1 properties. The molecules salvianolic acids B and C have been identified for the first time in L. trigonus species. Our study also showed that the L. trigonus extract blocked HIV-1 attachment to target cells, and that it has a broad spectrum of activity against different subtypes of the virus; thus, justifying further investigation as a HIV-1 microbicide.
Subject(s)
Boraginaceae/chemistry , HIV-1/drug effects , Plant Extracts/pharmacology , Anti-HIV Agents/isolation & purification , Anti-HIV Agents/pharmacology , Chromatography, High Pressure Liquid , Female , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/virology , Male , Models, Molecular , Molecular Dynamics Simulation , Plant Components, Aerial , South AfricaABSTRACT
Geigeria poisoning, referred to as 'vermeersiekte' is an important plant poisoning in southern Africa. Three sesquiterpene lactones, isogeigerin acetate (1) ivalin (2) and geigerin (3) were isolated and purified from Geigeria aspera Harv. (Asteraceae). Structures were deduced using 1 and 2D NMR spectroscopy and mass spectrometry, while the absolute configurations of compounds 1 and 3 were determined for the first time by X-ray crystal diffraction analyses. Cytotoxicity of isogeigerin acetate, ivalin and geigerin were compared by exposing a murine skeletal myoblast (C2C12) cell line to varying concentrations of the three sesquiterpene lactones isolated. Cell viability was assessed using the methyl-thiazolyl-tetrazolium (MTT) assay. The EC50s were 3.746, 0.0029 and 3.792 mM for isogeigerin acetate (1), ivalin (2) and geigerin (3), respectively. The results indicate that ivalin is much more toxic, approximately 1000 times, in vitro compared to isogeigerin acetate and geigerin.
Subject(s)
Geigeria/chemistry , Lactones/isolation & purification , Lactones/pharmacology , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Animals , Carbon-13 Magnetic Resonance Spectroscopy , Cell Death/drug effects , Cell Line , Cell Line, Tumor , Lactones/chemistry , Mice , Proton Magnetic Resonance Spectroscopy , Sesquiterpenes/chemistryABSTRACT
No abstract available.
ABSTRACT
The stem bark extract of Suregada zanzibariensis afforded a previously undescribed ent-abietane diterpenoid trivially named mangiolide (1) and a known jolkinolide B (2) via anticancer bioassay-guided fractionation. The CH2Cl2:MeOH extract of S. zanzibariensis was initially analysed for its anticancer properties against three cancer cell lines, renal (TK10), melanoma (UACC62), and breast (MCF7) and was found to be potent at low µg/mL ranges. Compound 1, 6α-acetoxy-14-keto-ent-abieta-7(8),13(15)-diene-16,12-olide (mangiolide) inhibited the growth of renal (TK10) with a GI50 of 0.02 µg/mL; a GI50 of 0.03 µg/mL for melanoma (UACC62) and a GI50 of 0.05 µg/mL for breast (MCF7) cancer cell lines. Compound 2, 8,13-diepoxy-13,15-ent-abietene-16,12-olide (jolkinolide B) inhibited the growth (GI50) of the cell lines at 3.31 µg/mL for renal (TK10), 0.94 µg/mL for melanoma (UACC62) and 2.99 µg/mL for the breast (MCF7). The structures were established on the basis of their spectroscopic analysis and the absolute stereostructures assigned using electronic circular dichroism (ECD).
Subject(s)
Abietanes/pharmacology , Suregada/chemistry , Abietanes/chemistry , Abietanes/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Diterpenes/isolation & purification , Diterpenes/pharmacology , Drug Screening Assays, Antitumor , Euphorbiaceae/chemistry , Humans , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology , Spectrum Analysis , StereoisomerismABSTRACT
Hot water and hydroethanolic (70:30) extracts were prepared from 15 plant species, which were investigated to discover eco-friendly and less expensive tick control methods as an alternative to synthetic acaricides. A contact bioassay was used to determine the acaricidal activity of these extracts against the cattle tick, Rhipicephalus turanicus (Acari: Ixodidae) at a concentration of 20% (200 mg/mL). The hydroethanolic extracts had better activity than the hot water extracts against R. turanicus. The hydroethanolic extract from Tabernaemontana elegans (leaves) had the best mortality (87.0%). This was followed by Calpurnia aurea (stems) with a mortality of 75.0%, Schkuhria pinnata (whole plant) with a mortality of 67.0% and Aloe rupestris (leaves) with a mortality of 66.6%. The toxicity of the plant extracts was also investigated and it was found that most of the hydroethanolic and hot water extracts were either safe or very safe on human Vero kidney and liver HepG2 cells. From this study, it was evident that botanicals have the potential to be developed as environmentally benign natural acaricides against R. turanicus.