ABSTRACT
Memory B cells play a fundamental role in host defenses against viruses, but to date, their role has been relatively unsettled in the context of SARS-CoV-2. We report here a longitudinal single-cell and repertoire profiling of the B cell response up to 6 months in mild and severe COVID-19 patients. Distinct SARS-CoV-2 spike-specific activated B cell clones fueled an early antibody-secreting cell burst as well as a durable synchronous germinal center response. While highly mutated memory B cells, including pre-existing cross-reactive seasonal Betacoronavirus-specific clones, were recruited early in the response, neutralizing SARS-CoV-2 RBD-specific clones accumulated with time and largely contributed to the late, remarkably stable, memory B cell pool. Highlighting germinal center maturation, these cells displayed clear accumulation of somatic mutations in their variable region genes over time. Overall, these findings demonstrate that an antigen-driven activation persisted and matured up to 6 months after SARS-CoV-2 infection and may provide long-term protection.
Subject(s)
B-Lymphocytes/immunology , COVID-19/immunology , Immunologic Memory , Adult , COVID-19/physiopathology , Flow Cytometry , Germinal Center/cytology , Humans , Lymphocyte Activation , Middle Aged , Severity of Illness Index , Single-Cell Analysis , Spike Glycoprotein, Coronavirus/chemistryABSTRACT
The impact of the microbiome on HIV disease is widely acknowledged although the mechanisms downstream of fluctuations in microbial composition remain speculative. We detected rapid, dynamic changes in translocated microbial constituents during two years after cART initiation. An unbiased systems biology approach revealed two distinct pathways driven by changes in the abundance ratio of Serratia to other bacterial genera. Increased CD4 T cell numbers over the first year were associated with high Serratia abundance, pro-inflammatory innate cytokines, and metabolites that drive Th17 gene expression signatures and restoration of mucosal integrity. Subsequently, decreased Serratia abundance and downregulation of innate cytokines allowed re-establishment of systemic T cell homeostasis promoting restoration of Th1 and Th2 gene expression signatures. Analyses of three other geographically distinct cohorts of treated HIV infection established a more generalized principle that changes in diversity and composition of translocated microbial species influence systemic inflammation and consequently CD4 T cell recovery.
Subject(s)
Gastrointestinal Microbiome , HIV Infections/immunology , HIV Infections/microbiology , Antiretroviral Therapy, Highly Active , Biodiversity , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Chemokines/blood , Cohort Studies , Glycolysis , HIV Infections/blood , HIV Infections/drug therapy , Humans , Inflammation/genetics , Inflammation/pathology , Mitochondria/metabolism , Monocytes/metabolism , Nucleic Acids/blood , Principal Component Analysis , Serratia/physiology , Th1 Cells/immunology , Th2 Cells/immunology , Transcription, Genetic , Uganda , Viral Load/immunologyABSTRACT
Several studies have shown that the pre-vaccination immune state is associated with the antibody response to vaccination. However, the generalizability and mechanisms that underlie this association remain poorly defined. Here, we sought to identify a common pre-vaccination signature and mechanisms that could predict the immune response across 13 different vaccines. Analysis of blood transcriptional profiles across studies revealed three distinct pre-vaccination endotypes, characterized by the differential expression of genes associated with a pro-inflammatory response, cell proliferation, and metabolism alterations. Importantly, individuals whose pre-vaccination endotype was enriched in pro-inflammatory response genes known to be downstream of nuclear factor-kappa B showed significantly higher serum antibody responses 1 month after vaccination. This pro-inflammatory pre-vaccination endotype showed gene expression characteristic of the innate activation state triggered by Toll-like receptor ligands or adjuvants. These results demonstrate that wide variations in the transcriptional state of the immune system in humans can be a key determinant of responsiveness to vaccination.
Subject(s)
Antibody Formation , Vaccines , Humans , Vaccination , Adjuvants, Immunologic , Immunity, InnateABSTRACT
Systems vaccinology has defined molecular signatures and mechanisms of immunity to vaccination. However, comparative analysis of immunity to different vaccines is lacking. We integrated transcriptional data of over 3,000 samples, from 820 adults across 28 studies of 13 vaccines and analyzed vaccination-induced signatures of antibody responses. Most vaccines induced signatures of innate immunity and plasmablasts at days 1 and 7, respectively, after vaccination. However, the yellow fever vaccine induced an early transient signature of T and B cell activation at day 1, followed by delayed antiviral/interferon and plasmablast signatures that peaked at days 7 and 14-21, respectively. Thus, there was no evidence for a 'universal signature' that predicted antibody response to all vaccines. However, accounting for the asynchronous nature of responses, we defined a time-adjusted signature that predicted antibody responses across vaccines. These results provide a transcriptional atlas of immunity to vaccination and define a common, time-adjusted signature of antibody responses.
Subject(s)
Antibody Formation , Vaccines , Adult , Humans , Antibody Formation/genetics , Gene Expression Profiling/methods , Vaccination , Immunity, Innate , Antibodies, ViralABSTRACT
Development of effective human immunodeficiency virus 1 (HIV-1) vaccines requires synergy between innate and adaptive immune cells. Here we show that induction of the transcription factor CREB1 and its target genes by the recombinant canarypox vector ALVAC + Alum augments immunogenicity in non-human primates (NHPs) and predicts reduced HIV-1 acquisition in the RV144 trial. These target genes include those encoding cytokines/chemokines associated with heightened protection from simian immunodeficiency virus challenge in NHPs. Expression of CREB1 target genes probably results from direct cGAMP (STING agonist)-modulated p-CREB1 activity that drives the recruitment of CD4+ T cells and B cells to the site of antigen presentation. Importantly, unlike NHPs immunized with ALVAC + Alum, those immunized with ALVAC + MF59, the regimen in the HVTN702 trial that showed no protection from HIV infection, exhibited significantly reduced CREB1 target gene expression. Our integrated systems biology approach has validated CREB1 as a critical driver of vaccine efficacy and highlights that adjuvants that trigger CREB1 signaling may be critical for efficacious HIV-1 vaccines.
Subject(s)
Cyclic AMP Response Element-Binding Protein/immunology , HIV Infections/immunology , HIV-1/immunology , Immunogenicity, Vaccine/immunology , Viral Vaccines/immunology , AIDS Vaccines/immunology , Adjuvants, Immunologic/pharmacology , Animals , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Gene Expression/immunology , Genetic Vectors/immunology , HIV Antibodies/immunology , HIV Infections/virology , Humans , Immunization/methods , Primates/immunology , Primates/virology , Vaccination/methodsABSTRACT
How infection by a viral variant showing antigenic drift impacts a preformed mature human memory B cell (MBC) repertoire remains an open question. Here, we studied the MBC response up to 6 months after SARS-CoV-2 Omicron BA.1 breakthrough infection in individuals previously vaccinated with three doses of the COVID-19 mRNA vaccine. Longitudinal analysis, using single-cell multi-omics and functional analysis of monoclonal antibodies from RBD-specific MBCs, revealed that a BA.1 breakthrough infection mostly recruited pre-existing cross-reactive MBCs with limited de novo response against BA.1-restricted epitopes. Reorganization of clonal hierarchy and new rounds of germinal center reactions, however, combined to maintain diversity and induce progressive maturation of the MBC repertoire against common Hu-1 and BA.1, but not BA.5-restricted, SARS-CoV-2 Spike RBD epitopes. Such remodeling was further associated with a marked improvement in overall neutralizing breadth and potency. These findings have fundamental implications for the design of future vaccination booster strategies.
Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2 , Memory B Cells , Breakthrough Infections , Epitopes , Antibodies, Viral , Antibodies, NeutralizingABSTRACT
The SARS-CoV-2 Omicron variant can escape neutralization by vaccine-elicited and convalescent antibodies. Memory B cells (MBCs) represent another layer of protection against SARS-CoV-2, as they persist after infection and vaccination and improve their affinity. Whether MBCs elicited by mRNA vaccines can recognize the Omicron variant remains unclear. We assessed the affinity and neutralization potency against the Omicron variant of several hundred naturally expressed MBC-derived monoclonal IgG antibodies from vaccinated COVID-19-recovered and -naive individuals. Compared with other variants of concern, Omicron evaded recognition by a larger proportion of MBC-derived antibodies, with only 30% retaining high affinity against the Omicron RBD, and the reduction in neutralization potency was even more pronounced. Nonetheless, neutralizing MBC clones could be found in all the analyzed individuals. Therefore, despite the strong immune escape potential of the Omicron variant, these results suggest that the MBC repertoire generated by mRNA vaccines still provides some protection against the Omicron variant in vaccinated individuals.
Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Memory B Cells , RNA, Messenger/genetics , Spike Glycoprotein, Coronavirus/genetics , VaccinationABSTRACT
In addition to serum immunoglobulins, memory B cell (MBC) generation against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is another layer of immune protection, but the quality of MBC responses in naive and coronavirus disease 2019 (COVID-19)-recovered individuals after vaccination remains ill defined. We studied longitudinal cohorts of naive and disease-recovered individuals for up to 2 months after SARS-CoV-2 mRNA vaccination. We assessed the quality of the memory response by analysis of antibody repertoires, affinity, and neutralization against variants of concern (VOCs) using unbiased cultures of 2,452 MBCs. Upon boosting, the MBC pool of recovered individuals expanded selectively, matured further, and harbored potent neutralizers against VOCs. Although naive individuals had weaker neutralizing serum responses, half of their RBD-specific MBCs displayed high affinity toward multiple VOCs, including delta (B.1.617.2), and one-third retained neutralizing potency against beta (B.1.351). Our data suggest that an additional challenge in naive vaccinees could recall such affinity-matured MBCs and allow them to respond efficiently to VOCs.
Subject(s)
BNT162 Vaccine/immunology , COVID-19/immunology , Memory B Cells/immunology , Precursor Cells, B-Lymphoid/immunology , RNA, Messenger/genetics , SARS-CoV-2/physiology , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Antibody Affinity , Cells, Cultured , Convalescence , Humans , Immunization, Secondary , Immunologic Memory , Mass Vaccination , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunologyABSTRACT
SARS-CoV-2 variants with undetermined properties have emerged intermittently throughout the COVID-19 pandemic. Some variants possess unique phenotypes and mutations which allow further characterization of viral evolution and Spike functions. Around 1,100 cases of the B.1.640.1 variant were reported in Africa and Europe between 2021 and 2022, before the expansion of Omicron. Here, we analyzed the biological properties of a B.1.640.1 isolate and its Spike. Compared to the ancestral Spike, B.1.640.1 carried 14 amino acid substitutions and deletions. B.1.640.1 escaped binding by some anti-N-terminal domain and anti-receptor-binding domain monoclonal antibodies, and neutralization by sera from convalescent and vaccinated individuals. In cell lines, infection generated large syncytia and a high cytopathic effect. In primary airway cells, B.1.640.1 replicated less than Omicron BA.1 and triggered more syncytia and cell death than other variants. The B.1.640.1 Spike was highly fusogenic when expressed alone. This was mediated by two poorly characterized and infrequent mutations located in the Spike S2 domain, T859N and D936H. Altogether, our results highlight the cytopathy of a hyper-fusogenic SARS-CoV-2 variant, supplanted upon the emergence of Omicron BA.1. (This study has been registered at ClinicalTrials.gov under registration no. NCT04750720.)IMPORTANCEOur results highlight the plasticity of SARS-CoV-2 Spike to generate highly fusogenic and cytopathic strains with the causative mutations being uncharacterized in previous variants. We describe mechanisms regulating the formation of syncytia and the subsequent consequences in a primary culture model, which are poorly understood.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Africa , COVID-19/virology , Pandemics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/physiology , Giant Cells/virologyABSTRACT
Respiratory syncytial virus (RSV) infection is a major cause of pneumonia in adults. Little is known on the viral genetic diversity and the associated clinical phenotypes in this population. This single-center prospective cohort study included RSV-infected patients hospitalized between January 2019 and December 2022. Of 100 patients, including 41 with severe infection, 72 were infected with RSV-B. RSV genome sequencing showed no clustering according to severity. Patients infected with RSV-B with risk factors for severe pneumonia had significantly higher fusion protein diversity scores. No amino acid substitutions conferring resistance to nirsevimab were detected.
Subject(s)
Pneumonia , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Adult , Humans , Infant , Prospective Studies , Respiratory Syncytial Virus, Human/genetics , PhenotypeABSTRACT
BACKGROUND AND AIMS: Suboptimal rates of sustained virological response have been reported in patients infected with an "unusual," non-1a/1b HCV genotype 1 subtype. The objectives of this study were to assess the proportion of non-1a/1b genotype 1 subtypes in a population of HCV-infected patients who failed to achieve sustained virological response after first-line direct-acting antiviral treatment, to virologically characterize their failures and to assess their outcomes on retreatment. APPROACH AND RESULTS: Samples addressed between January 2015 and December 2021 to the French National Reference Center for Viral Hepatitis B, C, and D were prospectively analyzed by means of Sanger and deep sequencing. Among 640 failures, 47 (7.3%) occurred in patients infected with an "unusual" genotype 1 subtype. Samples were available in 43 of them; 92.5% of these patients were born in Africa. Our results show the presence at baseline and at treatment failure of NS3 protease and/or NS5A polymorphisms conferring inherent reduced susceptibility to direct-acting antivirals in these patients, together with the presence at failure of additional resistance-associated substitutions not naturally present as dominant species, but jointly selected by first-line therapy. CONCLUSIONS: Patients infected with "unusual" HCV genotype 1 subtypes are over-represented among direct-acting antiviral treatment failures. Most of them were born and likely infected in sub-Saharan Africa. "Unusual" HCV genotype 1 subtypes naturally carry polymorphisms that confer reduced susceptibility to the drugs currently used to cure hepatitis C, in particular the NS5A inhibitors. Retreatment with sofosbuvir plus an NS3 protease and an NS5A inhibitor is generally efficacious.
Subject(s)
Hepatitis C, Chronic , Hepatitis C , Humans , Antiviral Agents , Hepatitis C, Chronic/drug therapy , Genotype , Drug Therapy, Combination , Drug Resistance, Viral/genetics , Viral Nonstructural Proteins/genetics , Hepacivirus/genetics , Treatment Failure , Hepatitis C/drug therapy , Hepatitis C/epidemiology , Retreatment , Peptide Hydrolases/genetics , Peptide Hydrolases/therapeutic useABSTRACT
Hepatitis of undetermined origin can be caused by a wide variety of pathogens, sometimes emerging pathogens. We report the discovery, by means of routine shotgun metagenomics, of a new virus belonging to the family Circoviridae, genus Circovirus, in a patient in France who had acute hepatitis of unknown origin.
Subject(s)
Circoviridae Infections , Circovirus , Hepatitis A , Hepatitis , Viruses , Humans , Circoviridae Infections/diagnosis , Circovirus/genetics , France/epidemiology , Metagenome , Immunocompromised HostABSTRACT
COVID-19 is characterized by respiratory symptoms of various severities, ranging from mild upper respiratory signs to acute respiratory failure/acute respiratory distress syndrome associated with a high mortality rate. However, the pathophysiology of the disease is largely unknown. Shotgun metagenomics from nasopharyngeal swabs were used to characterize the genomic, metagenomic and transcriptomic features of patients from the first pandemic wave with various forms of COVID-19, including outpatients, patients hospitalized not requiring intensive care, and patients in the intensive care unit, to identify viral and/or host factors associated with the most severe forms of the disease. Neither the genetic characteristics of SARS-CoV-2, nor the detection of bacteria, viruses, fungi or parasites were associated with the severity of pulmonary disease. Severe pneumonia was associated with overexpression of cytokine transcripts activating the CXCR2 pathway, whereas patients with benign disease presented with a T helper "Th1-Th17" profile. The latter profile was associated with female gender and a lower mortality rate. Our findings indicate that the most severe cases of COVID-19 are characterized by the presence of overactive immune cells resulting in neutrophil pulmonary infiltration which, in turn, could enhance the inflammatory response and prolong tissue damage. These findings make CXCR2 antagonists, in particular IL-8 antagonists, promising candidates for the treatment of patients with severe COVID-19.
Subject(s)
COVID-19 , Genome, Viral , Metagenomics , SARS-CoV-2 , Th1 Cells/immunology , Th17 Cells/immunology , Transcriptome , Adult , Aged , Aged, 80 and over , COVID-19/genetics , COVID-19/immunology , Female , Humans , Male , Middle Aged , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunologyABSTRACT
Simian immunodeficiency virus (SIV) challenge of rhesus macaques (RMs) vaccinated with strain 68-1 Rhesus Cytomegalovirus (RhCMV) vectors expressing SIV proteins (RhCMV/SIV) results in a binary outcome: stringent control and subsequent clearance of highly pathogenic SIV in ~55% of vaccinated RMs with no protection in the remaining 45%. Although previous work indicates that unconventionally restricted, SIV-specific, effector-memory (EM)-biased CD8+ T cell responses are necessary for efficacy, the magnitude of these responses does not predict efficacy, and the basis of protection vs. non-protection in 68-1 RhCMV/SIV vector-vaccinated RMs has not been elucidated. Here, we report that 68-1 RhCMV/SIV vector administration strikingly alters the whole blood transcriptome of vaccinated RMs, with the sustained induction of specific immune-related pathways, including immune cell, toll-like receptor (TLR), inflammasome/cell death, and interleukin-15 (IL-15) signaling, significantly correlating with subsequent vaccine efficacy. Treatment of a separate RM cohort with IL-15 confirmed the central involvement of this cytokine in the protection signature, linking the major innate and adaptive immune gene expression networks that correlate with RhCMV/SIV vaccine efficacy. This change-from-baseline IL-15 response signature was also demonstrated to significantly correlate with vaccine efficacy in an independent validation cohort of vaccinated and challenged RMs. The differential IL-15 gene set response to vaccination strongly correlated with the pre-vaccination activity of this pathway, with reduced baseline expression of IL-15 response genes significantly correlating with higher vaccine-induced induction of IL-15 signaling and subsequent vaccine protection, suggesting that a robust de novo vaccine-induced IL-15 signaling response is needed to program vaccine efficacy. Thus, the RhCMV/SIV vaccine imparts a coordinated and persistent induction of innate and adaptive immune pathways featuring IL-15, a known regulator of CD8+ T cell function, that support the ability of vaccine-elicited unconventionally restricted CD8+ T cells to mediate protection against SIV challenge.
Subject(s)
CD8-Positive T-Lymphocytes/immunology , Interleukin-15/immunology , SAIDS Vaccines/immunology , Simian Immunodeficiency Virus/immunology , Animals , Cytomegalovirus , Female , Genetic Vectors , Macaca mulatta , Male , Simian Acquired Immunodeficiency Syndrome/prevention & controlABSTRACT
Severe coronavirus disease 2019 (COVID-19) is related to dysregulated immune responses. We aimed to explore the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants on the immune response by nasopharyngeal transcriptomic in critically-ill patients. This prospective monocentric study included COVID-19 patients requiring intensive care unit (ICU) admission between March 2020 and 2022. Patients were classified according to VOC (ancestral, Alpha, Delta, and Omicron). Eighty-eight patients with severe COVID-19 were included after matching (on prespecified clinical criteria). Profiling of gene expression markers of innate and adaptive immune responses were investigated by respiratory transcriptomics at ICU admission. Eighty-eight patients were included in the study after matching (ancestral [n = 24], Alpha [n = 24], Delta [n = 22], and Omicron [n = 18] variants). Respiratory transcriptomic analysis revealed distinct innate and adaptive immune profiling between variants. In comparison with the ancestral variant, there was a reduced expression of neutrophil degranulation, T cell activation, cytokines signalling pathways in patients infected with Alpha and Delta variants. In contrast, there was a higher expression of neutrophil degranulation, T and B cells activation, and inflammatory interleukins pathways in patients infected with Omicron. To conclude, Omicron induced distinct immune respiratory transcriptomics signatures compared to pre-existing variants in patients with severe COVID-19, pointing to an evolving pathophysiology of severe COVID-19 in the Omicron era.
Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Transcriptome , Critical Illness , Prospective StudiesABSTRACT
Treatment of HIV infection with either antiretroviral (ARV) therapy or neutralizing monoclonal antibodies (NAbs) leads to a reduction in HIV plasma virus. Both ARVs and NAbs prevent new rounds of viral infection, but NAbs may have the additional capacity to accelerate the loss of virus-infected cells through Fc gamma receptor (FcγR)-mediated effector functions, which should affect the kinetics of plasma-virus decline. Here, we formally test the role of effector function in vivo by comparing the rate and timing of plasma-virus clearance in response to a single-dose treatment with either unmodified NAb or those with either reduced or augmented Fc function. When infused into viremic simian HIV (SHIV)-infected rhesus macaques, there was a 21% difference in slope of plasma-virus decline between NAb and NAb with reduced Fc function. NAb engineered to increase FcγRIII binding and improve antibody-dependent cellular cytotoxicity (ADCC) in vitro resulted in arming of effector cells in vivo, yet led to viral-decay kinetics similar to NAbs with reduced Fc function. These studies show that the predominant mechanism of antiviral activity of HIV NAbs is through inhibition of viral entry, but that Fc function can contribute to the overall antiviral activity, making them distinct from standard ARVs.
Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections , HIV-1/immunology , Receptors, IgG/immunology , Animals , Antibody-Dependent Cell Cytotoxicity/immunology , Cells, Cultured , Disease Models, Animal , HIV Infections/immunology , HIV Infections/virology , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency VirusABSTRACT
We report an outbreak of severe acute respiratory syndrome coronavirus 2 501Y.V2 in a nursing home. All nonvaccinated residents (5/5) versus half of those vaccinated with BNT162b2 (13/26) were infected. Two of 13 vaccinated versus 4 of 5 nonvaccinated residents presented severe disease. BNT162b2 did not prevent the outbreak, but reduced transmission and disease severity.
Subject(s)
COVID-19 , SARS-CoV-2 , Aged , BNT162 Vaccine , Disease Outbreaks , Humans , Nursing Homes , RNA, Messenger , Severity of Illness Index , VaccinationABSTRACT
There are concerns about neutralizing antibodies' (NAbs') potency against severe acute respiratory syndrome coronavirus 2 variants. Despite decreased NAb titers elicited by BNT162b2 vaccine against VOC202012/01 and 501Y.V2 strains, 28/29 healthcare workers (HCWs) had an NAb titer ≥1:10. In contrast, 6 months after coronavirus disease 2019 mild forms, only 9/15 (60%) of HCWs displayed detectable NAbs against 501Y.V2 strain.
Subject(s)
COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , Health Personnel , Humans , SARS-CoV-2/genetics , United Kingdom/epidemiologyABSTRACT
We describe persistent circulation of SARS-CoV-2 Alpha variant in an immunosuppressed patient in France during February 2022. The virus had a new pattern of mutation accumulation. The ongoing circulation of previous variants of concern could lead to reemergence of variants with the potential to propagate future waves of infection.
Subject(s)
COVID-19 , SARS-CoV-2 , France/epidemiology , Humans , SARS-CoV-2/geneticsABSTRACT
The recombinant Canarypox ALVAC-HIV/gp120/alum vaccine regimen was the first to significantly decrease the risk of HIV acquisition in humans, with equal effectiveness in both males and females. Similarly, an equivalent SIV-based ALVAC vaccine regimen decreased the risk of virus acquisition in Indian rhesus macaques of both sexes following intrarectal exposure to low doses of SIVmac251. Here, we demonstrate that the ALVAC-SIV/gp120/alum vaccine is also efficacious in female Chinese rhesus macaques following intravaginal exposure to low doses of SIVmac251 and we confirm that CD14+ classical monocytes are a strong correlate of decreased risk of virus acquisition. Furthermore, we demonstrate that the frequency of CD14+ cells and/or their gene expression correlates with blood Type 1 CD4+ T helper cells, α4ß7+ plasmablasts, and vaginal cytocidal NKG2A+ cells. To better understand the correlate of protection, we contrasted the ALVAC-SIV vaccine with a NYVAC-based SIV/gp120 regimen that used the identical immunogen. We found that NYVAC-SIV induced higher immune activation via CD4+Ki67+CD38+ and CD4+Ki67+α4ß7+ T cells, higher SIV envelope-specific IFN-γ producing cells, equivalent ADCC, and did not decrease the risk of SIVmac251 acquisition. Using the systems biology approach, we demonstrate that specific expression profiles of plasmablasts, NKG2A+ cells, and monocytes elicited by the ALVAC-based regimen correlated with decreased risk of virus acquisition.