Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Methods ; 201: 65-73, 2022 05.
Article in English | MEDLINE | ID: mdl-33812016

ABSTRACT

A candidate digital PCR (dPCR)-based reference measurement procedure for quantification of human cytomegalovirus (hCMV) was evaluated in 10 viral load comparison schemes (seven external quality assessment (EQA) and three additional training schemes) organized by INSTAND e.V. over four years (between September 2014 and March 2018). Four metrology institutes participated in these schemes using the same extraction method and dPCR measurement procedure for the hCMV specific target sequence of UL54 gene. The calibration independent reference measurement procedure results from the metrology institutes were compared to the results of the clinical diagnostic laboratories applying hCMV qPCR measurement procedures calibrated to reference materials. While the criteria for the acceptable deviation from the target value interval for INSTAND's EQA schemes is from -0.8 log10 to +0.8 log10, the majority of dPCR results were between -0.2 log10 to +0.2 log10. Only 4 out of 45 results exceeded this interval with the maximum deviation of -0.542 log10. In the training schemes containing samples with lower hCMV concentrations, more than half of the results deviated less than ±0.2 log10 from the target value, while more than 95% deviated less than ±0.4 log10 from the target value. Evaluation of intra- and inter-laboratory variation of dPCR results confirmed high reproducibility and trueness of the method. This work demonstrates that dPCR has the potential to act as a calibration independent reference measurement procedure for the value assignment of hCMV calibration and reference materials to support qPCR calibration as well as ultimately for routine hCMV load testing.


Subject(s)
Cytomegalovirus , Calibration , Cytomegalovirus/genetics , Humans , Real-Time Polymerase Chain Reaction/methods , Reproducibility of Results
2.
Anal Chem ; 94(14): 5566-5574, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35357151

ABSTRACT

The use of standardized components and processes in engineering underpins the design-build-test model, and the engineering of biological systems is no different. Substantial efforts to standardize both the components and the methods to validate the engineered biological systems is ongoing. This study has developed a panel of control materials encoding the commonly used reporter genes GFP and RFP as DNA or RNA molecules. Each panel contained up to six samples with increasingly small copy number differences between the two reporter genes that ranged from 1- to 2-fold differences. These copy number differences represent the magnitude of changes that may need to be measured to validate an engineered system. Using digital PCR (dPCR), we demonstrated that it is possible to quantify changes in both gene and gene transcript numbers both within and between samples down to 1.05-fold. We corroborated these findings using a simple gene circuit within a bacterial model to demonstrate that dPCR was able to precisely identify small changes in gene expression of two transcripts in response to promoter stimulation. Finally, we used our findings to highlight sources of error that can contributed to the measurement uncertainty in the measurement of small ratios in biological systems. Together, the development of a panel of control materials and validation of a high accuracy method for the measurement of small changes in gene expression, this study can contribute to the engineering biology "toolkit" of methods and materials to support the current standardization efforts.


Subject(s)
Polymerase Chain Reaction , Genes, Reporter , Polymerase Chain Reaction/methods , Promoter Regions, Genetic
3.
Clin Chem ; 68(1): 153-162, 2021 12 30.
Article in English | MEDLINE | ID: mdl-34633030

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA quantities, measured by reverse transcription quantitative PCR (RT-qPCR), have been proposed to stratify clinical risk or determine analytical performance targets. We investigated reproducibility and how setting diagnostic cutoffs altered the clinical sensitivity of coronavirus disease 2019 (COVID-19) testing. METHODS: Quantitative SARS-CoV-2 RNA distributions [quantification cycle (Cq) and copies/mL] from more than 6000 patients from 3 clinical laboratories in United Kingdom, Belgium, and the Republic of Korea were analyzed. Impact of Cq cutoffs on clinical sensitivity was assessed. The June/July 2020 INSTAND external quality assessment scheme SARS-CoV-2 materials were used to estimate laboratory reported copies/mL and to estimate the variation in copies/mL for a given Cq. RESULTS: When the WHO-suggested Cq cutoff of 25 was applied, the clinical sensitivity dropped to about 16%. Clinical sensitivity also dropped to about 27% when a simulated limit of detection of 106 copies/mL was applied. The interlaboratory variation for a given Cq value was >1000 fold in copies/mL (99% CI). CONCLUSION: While RT-qPCR has been instrumental in the response to COVID-19, we recommend Cq (cycle threshold or crossing point) values not be used to set clinical cutoffs or diagnostic performance targets due to poor interlaboratory reproducibility; calibrated copy-based units (used elsewhere in virology) offer more reproducible alternatives. We also report a phenomenon where diagnostic performance may change relative to the effective reproduction number. Our findings indicate that the disparities between patient populations across time are an important consideration when evaluating or deploying diagnostic tests. This is especially relevant to the emergency situation of an evolving pandemic.


Subject(s)
COVID-19 Nucleic Acid Testing/standards , COVID-19 , Nucleic Acids , Belgium , COVID-19/diagnosis , Humans , Nucleic Acids/analysis , RNA, Viral/analysis , Reproducibility of Results , Republic of Korea , SARS-CoV-2 , Sensitivity and Specificity , United Kingdom
4.
Clin Chem ; 64(9): 1296-1307, 2018 09.
Article in English | MEDLINE | ID: mdl-29903874

ABSTRACT

BACKGROUND: Genetic testing of tumor tissue and circulating cell-free DNA for somatic variants guides patient treatment of many cancers. Such measurements will be fundamental in the future support of precision medicine. However, there are currently no primary reference measurement procedures available for nucleic acid quantification that would support translation of tests for circulating tumor DNA into routine use. METHODS: We assessed the accuracy of digital PCR (dPCR) for copy number quantification of a frequently occurring single-nucleotide variant in colorectal cancer (KRAS c.35G>A, p.Gly12Asp, from hereon termed G12D) by evaluating potential sources of uncertainty that influence dPCR measurement. RESULTS: Concentration values for samples of KRAS G12D and wild-type plasmid templates varied by <1.2-fold when measured using 5 different assays with varying detection chemistry (hydrolysis, scorpion probes, and intercalating dyes) and <1.3-fold with 4 commercial dPCR platforms. Measurement trueness of a selected dPCR assay and platform was validated by comparison with an orthogonal method (inductively coupled plasma mass spectrometry). The candidate dPCR reference measurement procedure showed linear quantification over a wide range of copies per reaction and high repeatability and interlaboratory reproducibility (CV, 2%-8% and 5%-10%, respectively). CONCLUSIONS: This work validates dPCR as an SI-traceable reference measurement procedure based on enumeration and demonstrates how it can be applied for assignment of copy number concentration and fractional abundance values to DNA reference materials in an aqueous solution. High-accuracy measurements using dPCR will support the implementation and traceable standardization of molecular diagnostic procedures needed for advancements in precision medicine.


Subject(s)
Polymerase Chain Reaction/methods , Precision Medicine , DNA Copy Number Variations , Humans , Mass Spectrometry , Reproducibility of Results
5.
Anal Chem ; 89(3): 1724-1733, 2017 02 07.
Article in English | MEDLINE | ID: mdl-27935690

ABSTRACT

This study tested the claim that digital PCR (dPCR) can offer highly reproducible quantitative measurements in disparate laboratories. Twenty-one laboratories measured four blinded samples containing different quantities of a KRAS fragment encoding G12D, an important genetic marker for guiding therapy of certain cancers. This marker is challenging to quantify reproducibly using quantitative PCR (qPCR) or next generation sequencing (NGS) due to the presence of competing wild type sequences and the need for calibration. Using dPCR, 18 laboratories were able to quantify the G12D marker within 12% of each other in all samples. Three laboratories appeared to measure consistently outlying results; however, proper application of a follow-up analysis recommendation rectified their data. Our findings show that dPCR has demonstrable reproducibility across a large number of laboratories without calibration. This could enable the reproducible application of molecular stratification to guide therapy and, potentially, for molecular diagnostics.


Subject(s)
Proto-Oncogene Proteins p21(ras)/genetics , Real-Time Polymerase Chain Reaction/methods , DNA/chemistry , DNA/metabolism , Humans , Polymorphism, Single Nucleotide , Reproducibility of Results , Sequence Analysis, DNA
6.
Anal Bioanal Chem ; 409(10): 2601-2614, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28124757

ABSTRACT

Quantitative PCR (qPCR) is an important tool in pathogen detection. However, the use of different qPCR components, calibration materials and DNA extraction methods reduces comparability between laboratories, which can result in false diagnosis and discrepancies in patient care. The wider establishment of a metrological framework for nucleic acid tests could improve the degree of standardisation of pathogen detection and the quantification methods applied in the clinical context. To achieve this, accurate methods need to be developed and implemented as reference measurement procedures, and to facilitate characterisation of suitable certified reference materials. Digital PCR (dPCR) has already been used for pathogen quantification by analysing nucleic acids. Although dPCR has the potential to provide robust and accurate quantification of nucleic acids, further assessment of its actual performance characteristics is needed before it can be implemented in a metrological framework, and to allow adequate estimation of measurement uncertainties. Here, four laboratories demonstrated reproducibility (expanded measurement uncertainties below 15%) of dPCR for quantification of DNA from human cytomegalovirus, with no calibration to a common reference material. Using whole-virus material and extracted DNA, an intermediate precision (coefficients of variation below 25%) between three consecutive experiments was noted. Furthermore, discrepancies in estimated mean DNA copy number concentrations between laboratories were less than twofold, with DNA extraction as the main source of variability. These data demonstrate that dPCR offers a repeatable and reproducible method for quantification of viral DNA, and due to its satisfactory performance should be considered as candidate for reference methods for implementation in a metrological framework.


Subject(s)
Cytomegalovirus Infections/diagnosis , Cytomegalovirus/genetics , DNA, Viral/analysis , Laboratory Proficiency Testing/standards , Real-Time Polymerase Chain Reaction/methods , Cytomegalovirus/isolation & purification , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/virology , DNA, Viral/genetics , Humans , Reproducibility of Results
7.
J Clin Microbiol ; 54(2): 392-400, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26659206

ABSTRACT

Digital PCR (dPCR) is being increasingly used for the quantification of sequence variations, including single nucleotide polymorphisms (SNPs), due to its high accuracy and precision in comparison with techniques such as quantitative PCR (qPCR) and melt curve analysis. To develop and evaluate dPCR for SNP detection using DNA, RNA, and clinical samples, an influenza virus model of resistance to oseltamivir (Tamiflu) was used. First, this study was able to recognize and reduce off-target amplification in dPCR quantification, thereby enabling technical sensitivities down to 0.1% SNP abundance at a range of template concentrations, a 50-fold improvement on the qPCR assay used routinely in the clinic. Second, a method was developed for determining the false-positive rate (background) signal. Finally, comparison of dPCR with qPCR results on clinical samples demonstrated the potential impact dPCR could have on clinical research and patient management by earlier (trace) detection of rare drug-resistant sequence variants. Ultimately this could reduce the quantity of ineffective drugs taken and facilitate early switching to alternative medication when available. In the short term such methods could advance our understanding of microbial dynamics and therapeutic responses in a range of infectious diseases such as HIV, viral hepatitis, and tuberculosis. Furthermore, the findings presented here are directly relevant to other diagnostic areas, such as the detection of rare SNPs in malignancy, monitoring of graft rejection, and fetal screening.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral , Influenza A virus/drug effects , Influenza A virus/genetics , Influenza, Human/diagnosis , Influenza, Human/virology , Mutation , Antiviral Agents/therapeutic use , Genes, Viral , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/drug therapy , Molecular Typing , Oseltamivir/pharmacology , Polymorphism, Single Nucleotide , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
9.
BMC Infect Dis ; 16: 366, 2016 08 03.
Article in English | MEDLINE | ID: mdl-27487852

ABSTRACT

BACKGROUND: Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive. The lack of an adequate reference method and reference materials is a barrier to understanding the source of such disagreement. Digital PCR (dPCR) offers the potential for an accurate method for quantification of specific DNA sequences in reference materials which can be used to evaluate quantitative molecular methods for TB treatment monitoring. METHODS: To assess a novel approach for the development of quality assurance materials we used dPCR to quantify specific DNA sequences in a range of prototype reference materials and evaluated accuracy between different laboratories and instruments. The materials were then also used to evaluate the quantitative performance of qPCR and Xpert MTB/RIF in eight clinical testing laboratories. RESULTS: dPCR was found to provide results in good agreement with the other methods tested and to be highly reproducible between laboratories without calibration even when using different instruments. When the reference materials were analysed with qPCR and Xpert MTB/RIF by clinical laboratories, all laboratories were able to correctly rank the reference materials according to concentration, however there was a marked difference in the measured magnitude. CONCLUSIONS: TB is a disease where the quantification of the pathogen could lead to better patient management and qPCR methods offer the potential to rapidly perform such analysis. However, our findings suggest that when precisely characterised materials are used to evaluate qPCR methods, the measurement result variation is too high to determine whether molecular quantification of Mycobacterium tuberculosis would provide a clinically useful readout. The methods described in this study provide a means by which the technical performance of quantitative molecular methods can be evaluated independently of clinical variability to improve accuracy of measurement results. These will assist in ultimately increasing the likelihood that such approaches could be used to improve patient management of TB.


Subject(s)
DNA, Bacterial/isolation & purification , Mycobacterium tuberculosis/genetics , Real-Time Polymerase Chain Reaction/methods , Tuberculosis, Pulmonary/diagnosis , Adult , Female , Humans , Male , Microscopy , Molecular Diagnostic Techniques , Pathology, Molecular , Sensitivity and Specificity
10.
Anal Chem ; 87(7): 3706-13, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25646934

ABSTRACT

Digital PCR (dPCR) offers absolute quantification through the limiting dilution of template nucleic acid molecules and has the potential to offer high reproducibility. However, the robustness of dPCR has yet to be evaluated using complex genomes to compare different dPCR methods and platforms. We used DNA templates from the pathogen Mycobacterium tuberculosis to evaluate the impact of template type, master mixes, primer pairs and, crucially, extraction methods on dPCR performance. Performance was compared between the chip (BioMark) and droplet (QX100) formats. In the absence of any external calibration, dPCR measurements were generally consistent within ∼2-fold between different master mixes and primers. Template DNA integrity could influence dPCR performance: high molecular weight gDNA resulted in underperformance of one master mix, while restriction digestion of a low molecular weight sample also caused underestimation. Good concordance (≤1.5-fold difference) was observed between chip and droplet formats. Platform precision was in agreement with predicted Poisson error based on partition number, but this was a minor component (<10%) of the total variance when extraction was included. dPCR offers a robust reproducible method for DNA measurement; however, as a predominant source of error, the process of DNA extraction will need to be controlled with suitable calibrators to maximize agreement between laboratories.


Subject(s)
DNA, Bacterial/analysis , Mycobacterium Infections/microbiology , Mycobacterium bovis/genetics , Mycobacterium tuberculosis/genetics , Polymerase Chain Reaction/methods , Animals , DNA, Bacterial/genetics , Humans , Plasmids/genetics , Reproducibility of Results
11.
J Clin Microbiol ; 53(7): 2008-14, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25392365

ABSTRACT

Nucleic acid-based tests for infectious diseases currently used in the clinical laboratory and in point-of-care devices are diverse. Measurement challenges associated with standardization of quantitative viral load testing are discussed in relation to human cytomegalovirus, BK virus, and Epstein-Barr virus, while the importance of defining the performance of qualitative methods is illustrated with Mycobacterium tuberculosis and influenza virus. The development of certified reference materials whose values are traceable to higher-order standards and reference measurement procedures, using, for instance, digital PCR, will further contribute to the understanding of analytical performance characteristics and promote clinical data comparability.


Subject(s)
Bacteria/isolation & purification , Bacterial Load/standards , Molecular Diagnostic Techniques/standards , Viral Load/standards , Viruses/isolation & purification , Bacterial Infections/microbiology , Bacterial Load/methods , Humans , Molecular Diagnostic Techniques/methods , Reference Standards , Viral Load/methods , Virus Diseases/virology
12.
Clin Chem ; 61(1): 79-88, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25338683

ABSTRACT

BACKGROUND: Digital PCR (dPCR) is an increasingly popular manifestation of PCR that offers a number of unique advantages when applied to preclinical research, particularly when used to detect rare mutations and in the precise quantification of nucleic acids. As is common with many new research methods, the application of dPCR to potential clinical scenarios is also being increasingly described. CONTENT: This review addresses some of the factors that need to be considered in the application of dPCR. Compared to real-time quantitative PCR (qPCR), dPCR clearly has the potential to offer more sensitive and considerably more reproducible clinical methods that could lend themselves to diagnostic, prognostic, and predictive tests. But for this to be realized the technology will need to be further developed to reduce cost and simplify application. Concomitantly the preclinical research will need be reported with a comprehensive understanding of the associated errors. dPCR benefits from a far more predictable variance than qPCR but is as susceptible to upstream errors associated with factors like sampling and extraction. dPCR can also suffer systematic bias, particularly leading to underestimation, and internal positive controls are likely to be as important for dPCR as they are for qPCR, especially when reporting the absence of a sequence. SUMMARY: In this review we highlight some of the considerations that may be needed when applying dPCR and discuss sources of error. The factors discussed here aim to assist in the translation of dPCR to diagnostic, predictive, or prognostic applications.


Subject(s)
Molecular Diagnostic Techniques/methods , Polymerase Chain Reaction/methods , Humans , Molecular Diagnostic Techniques/instrumentation , Polymerase Chain Reaction/instrumentation , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted
13.
BMC Genomics ; 15: 1174, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25539843

ABSTRACT

BACKGROUND: DNA methylation is an important epigenetic mechanism in several human diseases, most notably cancer. The quantitative analysis of DNA methylation patterns has the potential to serve as diagnostic and prognostic biomarkers, however, there is currently a lack of consensus regarding the optimal methodologies to quantify methylation status. To address this issue we compared five analytical methods: (i) MethyLight qPCR, (ii) MethyLight digital PCR (dPCR), methylation-sensitive and -dependent restriction enzyme (MSRE/MDRE) digestion followed by (iii) qPCR or (iv) dPCR, and (v) bisulfite amplicon next generation sequencing (NGS). The techniques were evaluated for linearity, accuracy and precision. RESULTS: MethyLight qPCR displayed the best linearity across the range of tested samples. Observed methylation measured by MethyLight- and MSRE/MDRE-qPCR and -dPCR were not significantly different to expected values whilst bisulfite amplicon NGS analysis over-estimated methylation content. Bisulfite amplicon NGS showed good precision, whilst the lower precision of qPCR and dPCR analysis precluded discrimination of differences of < 25% in methylation status. A novel dPCR MethyLight assay is also described as a potential method for absolute quantification that simultaneously measures both sense and antisense DNA strands following bisulfite treatment. CONCLUSIONS: Our findings comprise a comprehensive benchmark for the quantitative accuracy of key methods for methylation analysis and demonstrate their applicability to the quantification of circulating tumour DNA biomarkers by using sample concentrations that are representative of typical clinical isolates.


Subject(s)
DNA Methylation , Epigenomics/methods , Genetic Markers/genetics , DNA Restriction Enzymes/metabolism , High-Throughput Nucleotide Sequencing , Humans , Polymerase Chain Reaction , Sequence Analysis, DNA , Sulfites/pharmacology
14.
Anal Chem ; 86(9): 4387-94, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24684191

ABSTRACT

Performing nucleic acid amplification techniques (NAATs) in digital format using limiting dilution provides potential advantages that have recently been demonstrated with digital polymerase chain reaction (dPCR). Key benefits that have been claimed are the ability to quantify nucleic acids without the need of an external calibrator and a greater resistance to inhibitors than real-time quantitative PCR (qPCR). In this study, we evaluated the performance of four NAATs, qPCR, dPCR, real-time quantitative loop mediated isothermal amplification (qLAMP), and digital LAMP (dLAMP), for the detection and quantification of human cytomegalovirus (hCMV). We used various DNA templates and inhibitors to compare the performance of these methods using a conventional real-time thermocycler platform (Bio-Rad CFX96) and a chip based digital platform (Fluidigm Biomark 12.765 Digital Array). dPCR performed well and demonstrated greater resistance to inhibitors than the other methods although this resistance did not apply equally to all inhibitors tested. dLAMP was found to be less sensitive than dPCR, but its quantitative performance was better than qLAMP, the latter being unable to quantify below 1000 copies. dLAMP was also more resistant to inhibitors than qLAMP. Unlike qPCR, both digital methods were able to quantify viral genomes without requiring a calibrator; however, neither can currently compete with the large reaction volumes, and thus the greater absolute sensitivity, of qPCR. With the introduction of digital instrumentation that will enable larger reaction volumes, digital amplification methods such as those evaluated in this study could potentially offer a robust alternative to qPCR for nucleic acid quantification.


Subject(s)
Cytomegalovirus/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Cytomegalovirus/genetics , DNA, Viral/genetics , Limit of Detection
15.
Anal Biochem ; 452: 103-13, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24631519

ABSTRACT

High-throughput quantitative polymerase chain reaction (qPCR) approaches enable profiling of multiple genes in single cells, bringing new insights to complex biological processes and offering opportunities for single cell-based monitoring of cancer cells and stem cell-based therapies. However, workflows with well-defined sources of variation are required for clinical diagnostics and testing of tissue-engineered products. In a study of neural stem cell lines, we investigated the performance of lysis, reverse transcription (RT), preamplification (PA), and nanofluidic qPCR steps at the single cell level in terms of efficiency, precision, and limit of detection. We compared protocols using a separate lysis buffer with cell capture directly in RT-PA reagent. The two methods were found to have similar lysis efficiencies, whereas the direct RT-PA approach showed improved precision. Digital PCR was used to relate preamplified template copy numbers to Cq values and reveal where low-quality signals may affect the analysis. We investigated the impact of calibration and data normalization strategies as a means of minimizing the impact of inter-experimental variation on gene expression values and found that both approaches can improve data comparability. This study provides validation and guidance for the application of high-throughput qPCR workflows for gene expression profiling of single cells.


Subject(s)
Polymerase Chain Reaction/methods , Single-Cell Analysis/methods , Calibration , Cell Line , Limit of Detection , Nanotechnology , RNA, Messenger/genetics , Reverse Transcription
16.
Anal Bioanal Chem ; 406(26): 6471-83, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24858468

ABSTRACT

Reverse transcription quantitative PCR is an established, simple and effective method for RNA measurement. However, technical standardisation challenges combined with frequent insufficient experimental detail render replication of many published findings challenging. Consequently, without adequate consideration of experimental standardisation, such findings may be sufficient for a given publication but cannot be translated to wider clinical application. This article builds on earlier standardisation work and the MIQE guidelines, discussing processes that need consideration for accurate, reproducible analysis when dealing with patient samples. By applying considerations common to the science of measurement (metrology), one can maximise the impact of gene expression studies, increasing the likelihood of their translation to clinical tools.


Subject(s)
Gene Expression Profiling/methods , RNA/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Animals , Gene Expression Profiling/standards , Genetic Testing/methods , Genetic Testing/standards , Humans , RNA/analysis , Reverse Transcriptase Polymerase Chain Reaction/standards , Reverse Transcription
17.
Methods ; 59(1): 89-100, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22841564

ABSTRACT

Recent years have seen the emergence of new high-throughput PCR and sequencing platforms with the potential to bring analysis of transcriptional biomarkers to a broader range of clinical applications and to provide increasing depth to our understanding of the transcriptome. We present an overview of how to process clinical samples for RNA biomarker analysis in terms of RNA extraction and mRNA enrichment, and guidelines for sample analysis by RT-qPCR and digital PCR using nanofluidic real-time PCR platforms. The options for quantitative gene expression profiling and whole transcriptome sequencing by next generation sequencing are reviewed alongside the bioinformatic considerations for these approaches. Considering the diverse technologies now available for transcriptome analysis, methods for standardising measurements between platforms will be paramount if their diagnostic impact is to be maximised. Therefore, the use of RNA standards and other reference materials is also discussed.


Subject(s)
High-Throughput Nucleotide Sequencing/standards , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction/standards , Reverse Transcriptase Polymerase Chain Reaction/standards , Animals , Biomarkers/metabolism , DNA Cleavage , Gene Library , Humans , Microfluidic Analytical Techniques , RNA, Messenger/isolation & purification , RNA, Messenger/metabolism , Reference Standards
18.
Anal Bioanal Chem ; 406(26): 6499-512, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24853859

ABSTRACT

Circulating cell-free DNA (cfDNA) is becoming an important clinical analyte for prenatal testing, cancer diagnosis and cancer monitoring. The extraction stage is critical in ensuring clinical sensitivity of analytical methods measuring minority nucleic acid fractions, such as foetal-derived sequences in predominantly maternal cfDNA. Consequently, quality controls are required for measurement of extraction efficiency, fragment size bias and yield for validation of cfDNA methods. We evaluated the utility of an external DNA spike for monitoring these parameters in a study comparing three specific cfDNA extraction methods [QIAamp circulating nucleic acid (CNA) kit, NucleoSpin Plasma XS (NS) kit and FitAmp plasma/serum DNA isolation (FA) kit] with the commonly used QIAamp DNA blood mini (DBM) kit. We found that the extraction efficiencies of the kits ranked in the order CNA kit > DBM kit > NS kit > FA kit, and the CNA and NS kits gave a better representation of smaller DNA fragments in the extract than the DBM kit. We investigated means of improved reporting of cfDNA yield by comparing quantitative PCR measurements of seven different reference gene assays in plasma samples and validating these with digital PCR. We noted that the cfDNA quantities based on measurement of some target genes (e.g. TERT) were, on average, more than twofold higher than those of other assays (e.g. ERV3). We conclude that analysis and averaging of multiple reference genes using a GeNorm approach gives a more reliable estimate of total cfDNA quantity.


Subject(s)
DNA/blood , DNA/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Female , Humans , Middle Aged , Reagent Kits, Diagnostic/standards , Real-Time Polymerase Chain Reaction/standards , Reference Standards , Reproducibility of Results
19.
Nucleic Acids Res ; 40(11): e82, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22373922

ABSTRACT

One of the benefits of Digital PCR (dPCR) is the potential for unparalleled precision enabling smaller fold change measurements. An example of an assessment that could benefit from such improved precision is the measurement of tumour-associated copy number variation (CNV) in the cell free DNA (cfDNA) fraction of patient blood plasma. To investigate the potential precision of dPCR and compare it with the established technique of quantitative PCR (qPCR), we used breast cancer cell lines to investigate HER2 gene amplification and modelled a range of different CNVs. We showed that, with equal experimental replication, dPCR could measure a smaller CNV than qPCR. As dPCR precision is directly dependent upon both the number of replicate measurements and the template concentration, we also developed a method to assist the design of dPCR experiments for measuring CNV. Using an existing model (based on Poisson and binomial distributions) to derive an expression for the variance inherent in dPCR, we produced a power calculation to define the experimental size required to reliably detect a given fold change at a given template concentration. This work will facilitate any future translation of dPCR to key diagnostic applications, such as cancer diagnostics and analysis of cfDNA.


Subject(s)
DNA Copy Number Variations , DNA, Neoplasm/chemistry , Gene Amplification , Microfluidic Analytical Techniques , Polymerase Chain Reaction/methods , Cell Line, Tumor , Female , Gene Dosage , Genes, erbB-2 , Humans
20.
Int J Mol Sci ; 15(11): 21476-91, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25421243

ABSTRACT

The application of high-throughput sequencing in profiling microbial communities is providing an unprecedented ability to investigate microbiomes. Such studies typically apply one of two methods: amplicon sequencing using PCR to target a conserved orthologous sequence (typically the 16S ribosomal RNA gene) or whole (meta)genome sequencing (WGS). Both methods have been used to catalog the microbial taxa present in a sample and quantify their respective abundances. However, a comparison of the inherent precision or bias of the different sequencing approaches has not been performed. We previously developed a metagenomic control material (MCM) to investigate error when performing different sequencing strategies. Amplicon sequencing using four different primer strategies and two 16S rRNA regions was examined (Roche 454 Junior) and compared to WGS (Illumina HiSeq). All sequencing methods generally performed comparably and in good agreement with organism specific digital PCR (dPCR); WGS notably demonstrated very high precision. Where discrepancies between relative abundances occurred they tended to differ by less than twofold. Our findings suggest that when alternative sequencing approaches are used for microbial molecular profiling they can perform with good reproducibility, but care should be taken when comparing small differences between distinct methods. This work provides a foundation for future work comparing relative differences between samples and the impact of extraction methods. We also highlight the value of control materials when conducting microbial profiling studies to benchmark methods and set appropriate thresholds.


Subject(s)
Metagenomics/methods , Microbiology , Polymerase Chain Reaction/methods , RNA, Ribosomal, 16S/genetics , Reproducibility of Results , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL